MyJournals Home  

RSS FeedsIJMS, Vol. 23, Pages 11580: Physiological and Comparative Transcriptome Analyses of the High-Tillering Mutant mtn1 Reveal Regulatory Mechanisms in the Tillering of Centipedegrass (Eremochloa ophiuroides (Munro) Hack.) (International Journal of Molecular Sciences)

 
 

30 september 2022 12:55:32

 
IJMS, Vol. 23, Pages 11580: Physiological and Comparative Transcriptome Analyses of the High-Tillering Mutant mtn1 Reveal Regulatory Mechanisms in the Tillering of Centipedegrass (Eremochloa ophiuroides (Munro) Hack.) (International Journal of Molecular Sciences)
 


Tillering is a key factor that determines the reproductive yields of centipedegrass, which is an important perennial warm-season turfgrass. However, the regulatory mechanism of tillering in perennial plants is poorly understood, especially in perennial turfgrasses. In this study, we created and characterised a cold plasma-mutagenised centipedegrass mutant, mtn1 (more tillering number 1). Phenotypic analysis showed that the mtn1 mutant exhibited high tillering, short internodes, long seeds and a heavy 1000-seed weight. Then, a comparative transcriptomic analysis of the mtn1 mutant and wild-type was performed to explore the molecular mechanisms of centipedegrass tillering. The results revealed that plant hormone signalling pathways, as well as starch and sucrose metabolism, might play important roles in centipedegrass tillering. Hormone and soluble sugar content measurements and exogenous treatment results validated that plant hormones and sugars play important roles in centipedegrass tiller development. In particular, the overexpression of the auxin transporter ATP-binding cassette B 11 (EoABCB11) in Arabidopsis resulted in more branches. Single nucleotide polymorphisms (SNPs) were also identified, which will provide a useful resource for molecular marker-assisted breeding in centipedegrass. According to the physiological characteristics and transcriptional expression levels of the related genes, the regulatory mechanism of centipedegrass tillering was systematically revealed. This research provides a new breeding resource for further studies into the molecular mechanism that regulates tillering in perennial plants and for breeding high-tillering centipedegrass varieties.


 
84 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 23, Pages 11573: Genome-Wide Identification and Salt Stress Response Analysis of the bZIP Transcription Factor Family in Sugar Beet (International Journal of Molecular Sciences)
IJMS, Vol. 23, Pages 11574: Down-Regulation of Lipid Metabolism in the Hepatopancreas of Shrimp Litopenaeus vannamei upon Light and Heavy Infection of Enterocytozoon hepatopenaei: A Comparative Proteomic Study (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten