MyJournals Home  

RSS FeedsIJMS, Vol. 23, Pages 11574: Down-Regulation of Lipid Metabolism in the Hepatopancreas of Shrimp Litopenaeus vannamei upon Light and Heavy Infection of Enterocytozoon hepatopenaei: A Comparative Proteomic Study (International Journal of Molecular Sciences)

 
 

30 september 2022 12:55:32

 
IJMS, Vol. 23, Pages 11574: Down-Regulation of Lipid Metabolism in the Hepatopancreas of Shrimp Litopenaeus vannamei upon Light and Heavy Infection of Enterocytozoon hepatopenaei: A Comparative Proteomic Study (International Journal of Molecular Sciences)
 


Enterocytozoon hepatopenaei (EHP) is the pathogen of hepatopancreatic microsporidiosis (HPM) in shrimp. The diseased shrimp Litopenaeus vannamei exhibits a slow growth syndrome, which causes severe economic losses. Herein, 4D label-free quantitative proteomics was employed to analyze the hepatopancreas of L. vannamei with a light (EHPptp2 < 103 copies/50 ng hpDNA, L group) and heavy (EHPptp2 > 104 copies/50 ng hpDNA, H group) load of EHP to better understand the pathogenesis of HPM. Exactly 786 (L group) and 1056 (H group) differentially expressed proteins (DEPs) versus the EHP-free (C group) control were mainly clustered to lipid metabolism, amino acid metabolism, and energy production processing. Compared with the L group, the H group exhibited down-regulation significantly in lipid metabolism, especially in the elongation and degradation of fatty acid, biosynthesis of unsaturated fatty acid, metabolism of α-linolenic acid, sphingolipid, and glycerolipid, as well as juvenile hormone (JH) degradation. Expression pattern analysis showed that the degree of infection was positively correlated with metabolic change. About 479 EHP proteins were detected in infected shrimps, including 95 predicted transporters. These findings suggest that EHP infection induced the consumption of storage lipids and the entire down-regulation of lipid metabolism and the coupling energy production, in addition to the hormone metabolism disorder. These were ultimately responsible for the stunted growth.


 
84 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 23, Pages 11580: Physiological and Comparative Transcriptome Analyses of the High-Tillering Mutant mtn1 Reveal Regulatory Mechanisms in the Tillering of Centipedegrass (Eremochloa ophiuroides (Munro) Hack.) (International Journal of Molecular Sciences)
IJMS, Vol. 23, Pages 11581: An Integrative Analysis of Identified Schizophrenia-Associated Brain Cell Types and Gene Expression Changes (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten