MyJournals Home  

RSS FeedsIJMS, Vol. 23, Pages 11664: Oxidative Stress and DNA Damage Markers in Colorectal Cancer (International Journal of Molecular Sciences)

 
 

1 october 2022 14:24:06

 
IJMS, Vol. 23, Pages 11664: Oxidative Stress and DNA Damage Markers in Colorectal Cancer (International Journal of Molecular Sciences)
 


Oxidative stress (OS) and inflammation are known to play an important role in chronic diseases, including cancer, and specifically colorectal cancer (CRC). The main objective of this study was to explore the diagnostic potential of OS markers in patients with CRC, which may translate into an early diagnosis of the disease. To do this, we compared results with those in a group of healthy controls and assessed whether there were significant differences. In addition, we explored possible correlations with the presence of tumors and tumor stage, with anemia and with inflammatory markers used in clinical practice. The study included 80 patients with CRC and 60 healthy controls. The following OS markers were analyzed: catalase (CAT), reduced glutathione (GSH) and oxidized glutathione (GSSG) in serum; and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and F2-isoprotanes in urine (F2-IsoPs). Tumor markers (CEA and CA 19.9), anemia markers (hemoglobin, hematocrit and medium corpuscular volume) and inflammatory markers (leukocytes, neutrophils, N/L index, platelets, fibrinogen, C-reactive protein, CRP and IL-6) were also determined. Comparison of means between patients and controls revealed highly significant differences for all OS markers, with an increase in the prooxidant markers GSSG, GSSG/GSH ratio, 8-oxodG and F2-IsoPs, and a decrease in the antioxidant markers CAT and GSH. Tumor and inflammatory markers (except CRP) correlated positively with GSSG, GSSG/GSH ratio, 8-oxodG and F2-IsoPs, and negatively with CAT and GSH. In view of the results obtained, OS markers may constitute a useful tool for the early diagnosis of CRC patients.


 
108 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 23, Pages 11663: Molecular Mechanisms Underlying Pathological and Therapeutic Roles of Pericytes in Atherosclerosis (International Journal of Molecular Sciences)
IJMS, Vol. 23, Pages 11665: Saccharomyces cerevisiae as a Model System for Eukaryotic Cell Biology, from Cell Cycle Control to DNA Damage Response (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten