MyJournals Home  

RSS FeedsIJMS, Vol. 23, Pages 11671: Glutamic Acid and Poly-γ-glutamic Acid Enhanced the Heat Resistance of Chinese Cabbage (Brassica rapa L. ssp. pekinensis) by Improving Carotenoid Biosynthesis, Photosynthesis, and ROS Signaling (International Journal of Molecular Sciences)

 
 

1 october 2022 16:03:56

 
IJMS, Vol. 23, Pages 11671: Glutamic Acid and Poly-γ-glutamic Acid Enhanced the Heat Resistance of Chinese Cabbage (Brassica rapa L. ssp. pekinensis) by Improving Carotenoid Biosynthesis, Photosynthesis, and ROS Signaling (International Journal of Molecular Sciences)
 


Heat stress is one of the most common agrometeorological risks in crop production in the middle and lower reaches of the Yangtze River in China. This study aimed to investigate whether glutamic acid (Glu) or poly-γ-glutamic acid (γ-PGA) biostimulants can improve the thermotolerance of a cool-season Chinese cabbage (Brassica rapa L. ssp. pekinensis) crop. Priming with Glu (2.0 mM) or γ-PGA (20 mg·L−1) was conducted at the third leaf stage by applying as daily foliar sprays for 5 days before 5 days of heat stress (45 °C in 16-h light/35 °C in 8-h dark). Coupled with morpho-physiological and biochemical analyses, transcriptomes of Glu or γ-PGA-primed Chinese cabbage under heat stress were examined by RNA-seq analysis. The results showed that the thermotolerance conferred by Glu and γ-PGA priming was associated with the increased parameters of vegetative growth, gas exchange, and chlorophyll fluorescence. Compared with the control, the dry weights of plants treated with Glu and γ-PGA increased by 51.52% and 39.39%, respectively. Glu and γ-PGA application also significantly increased the contents of total chlorophyll by 42.21% and 23.12%, and carotenoid by 32.00% and 24.00%, respectively. In addition, Glu- and γ-PGA-primed plants markedly inhibited the levels of malondialdehyde, electrolyte leakage, and super-oxide anion radical, which was accompanied by enhanced activity levels of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD). Enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) categories within the differentially expressed genes (DEGs) functional clusters of RNA-seq data indicated that the expression levels of the genes for DNA replication, DNA repair system, linoleic acid metabolism, cysteine and methionine metabolism, glutathione metabolism, purine and pyrimidine metabolism, carotenoid biosynthesis, and plant–pathogen interaction were commonly up-regulated by both Glu and γ-PGA priming. Glu treatment enhanced the expression levels of the genes involved in aliphatic glucosinolate and 2-oxocarboxylic acid, while γ-PGA treatment activated carotenoid cleavage reaction to synthesize abscisic acid. Taken together, both Glu and γ-PGA have great potential for the preadaptation of Chinese cabbage seedlings to heat stress, with Glu being more effective than γ-PGA.


 
73 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 23, Pages 11669: New CRISPR Tools to Correct Pathogenic Mutations in Usher Syndrome (International Journal of Molecular Sciences)
IJMS, Vol. 23, Pages 11622: Switching of Photocatalytic Tyrosine/Histidine Labeling and Application to Photocatalytic Proximity Labeling (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2022 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten