MyJournals Home  

RSS FeedsRemote Sensing, Vol. 14, Pages 4933: Use of Remote Sensing Techniques to Estimate Plant Diversity within Ecological Networks: A Worked Example (Remote Sensing)


2 october 2022 12:25:12

Remote Sensing, Vol. 14, Pages 4933: Use of Remote Sensing Techniques to Estimate Plant Diversity within Ecological Networks: A Worked Example (Remote Sensing)

As there is an urgent need to protect rapidly declining global diversity, it is important to identify methods to quickly estimate the diversity and heterogeneity of a region and effectively implement monitoring and conservation plans. The combination of remotely sensed and field-collected data, under the paradigm of the Spectral Variation Hypothesis (SVH), represents one of the most promising approaches to boost large-scale and reliable biodiversity monitoring practices. Here, the potential of SVH to capture information on plant diversity at a fine scale in an ecological network (EN) embedded in a complex landscape has been tested using two new and promising methodological approaches: the first estimates α and β spectral diversity and the latter ecosystem spectral heterogeneity expressed as Rao’s Quadratic heterogeneity measure (Rao’s Q). Both approaches are available thanks to two brand-new R packages: “biodivMapR” and “rasterdiv”. Our aims were to investigate if spectral diversity and heterogeneity provide reliable information to assess and monitor over time floristic diversity maintained in an EN selected as an example and located in northeast Italy. We analyzed and compared spectral and taxonomic α and β diversities and spectral and landscape heterogeneity, based on field-based plant data collection and remotely sensed data from Sentinel-2A, using different statistical approaches. We observed a positive relationship between taxonomic and spectral diversity and also between spectral heterogeneity, landscape heterogeneity, and the amount of alien species in relation to the native ones, reaching a value of R2 = 0.36 and R2 = 0.43, respectively. Our results confirmed the effectiveness of estimating and mapping α and β spectral diversity and ecosystem spectral heterogeneity using remotely sensed images. Moreover, we highlighted that spectral diversity values become more effective to identify biodiversity-rich areas, representing the most important diversity hotspots to be preserved. Finally, the spectral heterogeneity index in anthropogenic landscapes could be a powerful method to identify those areas most at risk of biological invasion.

80 viewsCategory: Geology, Physics
Remote Sensing, Vol. 14, Pages 4930: Characterizing Spatiotemporal Patterns of Winter Wheat Phenology from 1981 to 2016 in North China by Improving Phenology Estimation (Remote Sensing)
Remote Sensing, Vol. 14, Pages 4932: Recognition of Sago Palm Trees Based on Transfer Learning (Remote Sensing)
blog comments powered by Disqus
The latest issues of all your favorite science journals on one page


Register | Retrieve



Copyright © 2008 - 2023 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten