MyJournals Home  

RSS FeedsEnergies, Vol. 15, Pages 8974: Economic Conditions to Circularize Clinical Plastics (Energies)

 
 

27 november 2022 13:15:39

 
Energies, Vol. 15, Pages 8974: Economic Conditions to Circularize Clinical Plastics (Energies)
 


Over 5.5 million tons of plastic waste are generated globally from the research sectors. A university laboratory, e.g., pathology, can generate 250 tons of clinical plastic waste annually. The UK National Health Service (NHS) generates 133 kilotons (kt) of clinical plastic waste annually. Healthcare facilities in the US generate 1.7 million tons of clinical plastic waste annually. In addition, 95% of the clinical plastics are single-use plastics derived from fossil resources, i.e., crude oils. These single-use clinical plastic wastes are incinerated, contributing to global warming, or go to the landfill, contributing to resource depletion. Plastic leakage is a major threat to the environment. This linear plastics economy model, take-make-dispose, must be replaced by a circular plastics economy, i.e., sort plastic wastes, wash, decontaminate, recover materials, blend with bio-based compounds as necessary and circulate recyclate plastics, for holistic systemic sustainability. While there are multi-faceted environmental drivers for a circular plastics economy, there are many uncertainties in the economic attributes, electricity price, labor cost and chemical cost being the primary ones influencing the cost of production of secondary or recyclate plastics, requiring government and policy support, such as a gate fee on plastic waste by the generators to the recyclers. An essential macroeconomic condition for techno-economically (or micro-economically) feasible plastic waste recycling is low oil and gas prices that influence the recyclate plastics and electricity prices. It is essential to de-fossilize the economy by decoupling renewable electricity generation from natural gas consumption and fossil-independent biopolymer productions displacing fossil-derived plastics to stimulate the circular economy. This study shows a comprehensive and robust technoeconomic analysis of mechanical recycling of clinical plastic wastes into secondary plastics recovery.


 
132 viewsCategory: Biophysics, Biotechnology, Physics
 
Energies, Vol. 15, Pages 8972: Study on Unstable Combustion Characteristics of Model Combustor with Different Swirler Schemes (Energies)
Energies, Vol. 15, Pages 8973: Design and Robust Performance Analysis of Low-Order Approximation of Fractional PID Controller Based on an IABC Algorithm for an Automatic Voltage Regulator System (Energies)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten