Point cloud classification is a key step for threedimensional (3D) scene analysis in terrestrial laser scanning but is commonly affected by density variation. Many densityadaptive methods are used to weaken the impact of density variation and angular resolution, which denotes the angle between two horizontally or vertically adjacent laser beams and are commonly used as known parameters in those methods. However, it is difficult to avoid the case of unknown angular resolution, which limits the generality of such methods. Focusing on these problems, we propose a densityadaptive feature extraction method, considering the case when the angular resolution is unknown. Firstly, we present a method for angular resolution estimation called neighborhood analysis of randomly picked points (NARP). In NARP, n points are randomly picked from the original data and the k nearest points of each point are searched to form the neighborhood. The angles between the beams of each picked point and its corresponding neighboring points are used to construct a histogram, and the angular resolution is calculated by finding the adjacent beams of each picked point under this histogram. Then, a grid feature called relative projection density is proposed to weaken the effect of density variation based on the estimated angular resolution. Finally, a 12dimensional feature vector is constructed by combining relative projection density and other commonly used geometric features, and the semantic label is generated utilizing a Random Forest classifier. Five datasets with a known angular resolution are used to validate the NARP method and an urban scene with a scanning distance of up to 1 km is used to compare the relative projection density with traditional projection density. The results demonstrate that our method achieves an estimation error of less than 0.001° in most cases and is stable with respect to different types of targets and parameter settings. Compared with traditional projection density, the proposed relative projection density can improve the performance of classification, particularly for smallsize objects, such as cars, poles, and scanning artifacts.
