MyJournals Home  

RSS FeedsRemote Sensing, Vol. 14, Pages 6210: Using Deep Learning to Model Elevation Differences between Radar and Laser Altimetry (Remote Sensing)

 
 

8 december 2022 07:31:03

 
Remote Sensing, Vol. 14, Pages 6210: Using Deep Learning to Model Elevation Differences between Radar and Laser Altimetry (Remote Sensing)
 


Satellite and airborne observations of surface elevation are critical in understanding climatic and glaciological processes and quantifying their impact on changes in ice masses and sea level contribution. With the growing number of dedicated airborne campaigns and experimental and operational satellite missions, the science community has access to unprecedented and ever-increasing data. Combining elevation datasets allows potentially greater spatial-temporal coverage and improved accuracy; however, combining data from different sensor types and acquisition modes is difficult by differences in intrinsic sensor properties and processing methods. This study focuses on the combination of elevation measurements derived from ICESat-2 and Operation IceBridge LIDAR instruments and from CryoSat-2’s novel interferometric radar altimeter over Greenland. We develop a deep neural network based on sub-waveform information from CryoSat-2, elevation differences between radar and LIDAR, and additional inputs representing local geophysical information. A time series of maps are created showing observed LIDAR-radar differences and neural network model predictions. Mean LIDAR vs. interferometric radar adjustments and the broad spatial and temporal trends thereof are recreated by the neural network. The neural network also predicts radar-LIDAR differences with respect to waveform parameters better than a simple linear model; however, point level adjustments and the magnitudes of the spatial and temporal trends are underestimated.


 
99 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 14, Pages 6209: Correction: Rémy, S.; Anguelova, M.D. Improving the Representation of Whitecap Fraction and Sea Salt Aerosol Emissions in the ECMWF IFS-AER. Remote Sens. 2021, 13, 4856 (Remote Sensing)
Remote Sensing, Vol. 14, Pages 6211: Multispectral UAV-Based Monitoring of Leek Dry-Biomass and Nitrogen Uptake across Multiple Sites and Growing Seasons (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten