MyJournals Home  

RSS FeedsPharmaceuticals, Vol. 15, Pages 1526: ATL I, Acts as a SIRT6 Activator to Alleviate Hepatic Steatosis in Mice via Suppression of NLRP3 Inflammasome Formation (Pharmaceuticals)

 
 

8 december 2022 14:13:46

 
Pharmaceuticals, Vol. 15, Pages 1526: ATL I, Acts as a SIRT6 Activator to Alleviate Hepatic Steatosis in Mice via Suppression of NLRP3 Inflammasome Formation (Pharmaceuticals)
 


Accumulating evidence has highlighted that sirtuin-6 (SIRT6) plays an important role in hepatic gluconeogenesis and lipogenesis. We aim to investigate the underlying mechanisms and pharmacological interventions of SIRT6 on hepatic steatosis treatment. Herein, our results showed that atractylenolide I (ATL I) activated the deacetylase activity of SIRT6 to promote peroxisome proliferator-activated receptor alpha (PPARα) transcription and translation, while suppressing nuclear factor NF-kappa-B (NFκB)-induced NACHT, LRR, and PYD domains containing protein 3 (NLRP3) inflammasome formation. Together, these decreased the infiltration of F4/80 and CD11B positive macrophages, accompanied by decreased mRNA expression and serum levels of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL6), and interleukin-1 beta (IL1β). Additionally, these changes decreased sterol regulatory element-binding protein-1c (SREBP-1c) expression, while restoring carnitine O-palmitoyltransferase 1a (Cpt1a) expression, to decrease the size of adipocytes and adipose deposition, which, in turn, reversed high-fat diet (HFD)-induced liver weight and body weight accumulation in C57 mice. SIRT6 knockout or hepatic SIRT6 knockout in C57 mice largely abolished the effect of ATL I on ameliorating hepatic steatosis. Taken together, our results suggest that ATL I acts as a promising compound that activates SIRT6/PPARα signaling and attenuates the NLRP3 inflammasome to ameliorate hepatic inflammation and steatosis.


 
100 viewsCategory: Medicine, Pharmacology
 
Pharmaceuticals, Vol. 15, Pages 1525: Formulation of Multicomponent Chrysin-Hydroxy Propyl β Cyclodextrin-Poloxamer Inclusion Complex Using Spray Dry Method: Physicochemical Characterization to Cell Viability Assessment (Pharmaceuticals)
Pharmaceuticals, Vol. 15, Pages 1527: Development and Optimization of Tamarind Gum-β-Cyclodextrin-g-Poly(Methacrylate) pH-Responsive Hydrogels for Sustained Delivery of Acyclovir (Pharmaceuticals)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Pharmacology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten