MyJournals Home  

RSS FeedsMolecules, Vol. 28, Pages 1245: Efficient Bioconversion of Stevioside and Rebaudioside A to Glucosylated Steviol Glycosides Using an Alkalihalobacillus oshimesis-Derived Cyclodextrin Glucanotransferase (Molecules)

 
 

27 january 2023 13:51:42

 
Molecules, Vol. 28, Pages 1245: Efficient Bioconversion of Stevioside and Rebaudioside A to Glucosylated Steviol Glycosides Using an Alkalihalobacillus oshimesis-Derived Cyclodextrin Glucanotransferase (Molecules)
 


The enzymatic transglycosylation of steviol glycosides can improve the edulcorant quality of steviol glycosides. Cyclodextrin glucanotransferase (CGTase) is one of the most popular glucanotransferases applied in this reaction. Herein, the CGTase-producing strain Alkalihalobacillus oshimensis CGMCC 23164 was isolated from Stevia planting soil. Using mass spectrometry-based secretome profiling, a high-efficiency CGTase that converted steviol glycosides to glucosylated steviol glycosides was identified and termed CGTase-13. CGTase-13 demonstrated optimal transglycosylation activity with 10 g/L steviol glycoside and 50 g/L soluble starch as substrates at <40 °C. Under the above conditions, the conversion rate of stevioside and rebaudioside A, two main components of steviol glycosides, reached 86.1% and 90.8%, respectively. To the best of our knowledge, this is the highest conversion rate reported to date. Compared with Toruzyme® 3.0 L, the commonly used commercial enzyme blends, glucosylated steviol glycosides produced using CGTase-13 exhibited weaker astringency and unpleasant taste, faster sweetness onset, and stronger sweetness intensity. Thus, CGTase provides a novel option for producing high-quality glucosylated steviol glycoside products and has great potential for industrial applications.


 
96 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 28, Pages 1246: Identification of Unstable Ellagitannin Metabolites in the Leaves of Quercus dentata by Chemical Derivatization (Molecules)
Molecules, Vol. 28, Pages 1248: Structure and Conformational Mobility of OLED-Relevant 1,3,5-Triazine Derivatives (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten