MyJournals Home  

RSS FeedsRemote Sensing, Vol. 15, Pages 778: Tree Crown Detection and Delineation in a Temperate Deciduous Forest from UAV RGB Imagery Using Deep Learning Approaches: Effects of Spatial Resolution and Species Characteristics (Remote Sensing)

 
 

29 january 2023 14:21:14

 
Remote Sensing, Vol. 15, Pages 778: Tree Crown Detection and Delineation in a Temperate Deciduous Forest from UAV RGB Imagery Using Deep Learning Approaches: Effects of Spatial Resolution and Species Characteristics (Remote Sensing)
 


The automatic detection of tree crowns and estimation of crown areas from remotely sensed information offer a quick approach for grasping the dynamics of forest ecosystems and are of great significance for both biodiversity and ecosystem conservation. Among various types of remote sensing data, unmanned aerial vehicle (UAV)-acquired RGB imagery has been increasingly used for tree crown detection and crown area estimation; the method has efficient advantages and relies heavily on deep learning models. However, the approach has not been thoroughly investigated in deciduous forests with complex crown structures. In this study, we evaluated two widely used, deep-learning-based tree crown detection and delineation approaches (DeepForest and Detectree2) to assess their potential for detecting tree crowns from UAV-acquired RGB imagery in an alpine, temperate deciduous forest with a complicated species composition. A total of 499 digitized crowns, including four dominant species, with corresponding, accurate inventory data in a 1.5 ha study plot were treated as training and validation datasets. We attempted to identify an effective model to delineate tree crowns and to explore the effects of the spatial resolution on the detection performance, as well as the extracted tree crown areas, with a detailed field inventory. The results show that the two deep-learning-based models, of which Detectree2 (F1 score: 0.57) outperformed DeepForest (F1 score: 0.52), could both be transferred to predict tree crowns successfully. However, the spatial resolution had an obvious effect on the estimation accuracy of tree crown detection, especially when the resolution was greater than 0.1 m. Furthermore, Dectree2 could estimate tree crown areas accurately, highlighting its potential and robustness for tree detection and delineation. In addition, the performance of tree crown detection varied among different species. These results indicate that the evaluated approaches could efficiently delineate individual tree crowns in high-resolution optical images, while demonstrating the applicability of Detectree2, and, thus, have the potential to offer transferable strategies that can be applied to other forest ecosystems.


 
123 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 15, Pages 777: High Signal-to-Noise Ratio MEMS Noise Listener for Ship Noise Detection (Remote Sensing)
Remote Sensing, Vol. 15, Pages 780: Densifying and Optimizing the Water Level Series for Large Lakes from Multi-Orbit ICESat-2 Observations (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten