MyJournals Home  

RSS FeedsRemote Sensing, Vol. 15, Pages 780: Densifying and Optimizing the Water Level Series for Large Lakes from Multi-Orbit ICESat-2 Observations (Remote Sensing)

 
 

30 january 2023 04:25:10

 
Remote Sensing, Vol. 15, Pages 780: Densifying and Optimizing the Water Level Series for Large Lakes from Multi-Orbit ICESat-2 Observations (Remote Sensing)
 


Satellite laser altimetry has been widely used for monitoring surface height changes in inland waters. However, constructing time series of water levels is partially limited in temporal resolution only based on the individual orbit of altimeter observations. To densify and optimize the time series of altimetry-based water levels is crucial to the scientific understanding of lake hydrologic dynamics. This paper focuses on synthesizing the multi-orbit on-lake observations from the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) to densify and refine the water level time series for large lakes. The approach of synthesizing water level time series has been validated through experiments applied to 18 large lakes worldwide, resulting in an average R of 0.93, RMSE of 0.14 m, MAE of 0.12 m, NSE of 0.67, and CV of 2.86, according to the hydrologic gauge stations. The evaluation results demonstrate that our approach can provide an effective solution for densifying the water level series of large lakes covered by multi-orbit ICESat-2 observations. Further, the approach can be extended to monitor the high-frequency variation of other lakes covered by the multiple ICESat-2 orbits. This approach provides the potential of generating higher-frequency estimates of water levels based on satellite altimetry, which could not only help to reveal the characteristics of the seasonal dynamics of lakes but also be used to investigate the abrupt water level changes due to hydrological extreme events (e.g., floods, droughts, etc.).


 
84 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 15, Pages 778: Tree Crown Detection and Delineation in a Temperate Deciduous Forest from UAV RGB Imagery Using Deep Learning Approaches: Effects of Spatial Resolution and Species Characteristics (Remote Sensing)
Remote Sensing, Vol. 15, Pages 779: Cross-Comparison of Radiation Response Characteristics between the FY-4B/AGRI and GK-2A/AMI in China (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten