MyJournals Home  

RSS FeedsEnergies, Vol. 16, Pages 1432: Influence of Supercritical CO2 Fluid on CH4 and CO2 Diffusion in Vitrinite-Rich Coals and Inertinite-Rich Coals (Energies)

 
 

1 february 2023 07:55:44

 
Energies, Vol. 16, Pages 1432: Influence of Supercritical CO2 Fluid on CH4 and CO2 Diffusion in Vitrinite-Rich Coals and Inertinite-Rich Coals (Energies)
 


Coal maceral composition has a great effect on gas adsorption and diffusion. The interaction between maceral composition and supercritical CO2 (SCCO2) fluid will affect gas diffusion behavior in coals. Thus, the diffusivity derived from adsorption kinetics of CH4 and CO2 in vitrinite- and inertinite-rich coals with low-violate bituminous rank collected from the Hancheng mine of the Weibei coalfield pre- and post-SCCO2 fluid exposure (SFE) were tested at the conditions of 45 °C and 0.9 MPa. In combination with pore distribution and functional group content, the possible mechanism of the alterations in gas diffusion characteristics in coals with various maceral compositions was addressed. The results show that for vitrinite-rich coals, SFE increases the macropore apparent diffusion coefficient of CH4, while this treatment decreases the micropore apparent diffusion coefficient of CH4. However, the reverse trend is found for CO2 diffusion–adsorption rate. For inertinite-rich coals post-SFE, CH4 diffusion–adsorption rate increases, while an increase and a decrease in diffusivity CO2 occur for macropore and micropore, respectively. Generally, SFE shows a stronger impact on CO2 adsorption rate than CH4 in coals. The results suggest that the diffusion of CH4 and CO2 in coals with different maceral compositions show selectivity to SCCO2 fluid. The possible reason can be attributed to the changes in pore structure and surface functional group content. SFE causes an increase in macro/mesopore volume of all samples. However, SFE induces a reduction in oxygen-containing species content and micropore volume of inertinite-rich coals, while the opposite trend occurs in vitrinite-rich coals. Thus, the changes in pore volume and surface functional group account for the difference in gas diffusivity of coals with different maceral compositions. With regard to the micropore diffusion–adsorption behavior of CH4 and CO2, the impact of oxygen-containing species is superior to pore volume. The oxygen-containing species favor CO2 diffusion–adsorption but go against CH4 transport. This effect accounts for the reduction in the micropore diffusion–adsorption rate of CH4 and the increase in micropore diffusivity of CO2 in vitrinite-rich coals, respectively. However, the aforementioned effect is the opposite for inertinite-rich coals. Overall, the changes in gas diffusion in coals with different maceral composition during the CO2-ECBM process requires further attention.


 
75 viewsCategory: Biophysics, Biotechnology, Physics
 
Energies, Vol. 16, Pages 1428: Green and Renewable Energy Innovations: A Comprehensive Bibliometric Analysis (Energies)
Energies, Vol. 16, Pages 1426: Estimating the Operating Reserve Demand Curve for Efficient Adoption of Renewable Sources in Korea (Energies)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten