MyJournals Home  

RSS FeedsEnergies, Vol. 16, Pages 1451: Characteristics of High Flow Zones and a Balanced Development Strategy of a Thick Bioclastic Limestone Reservoir in the Mishrif Formation in X Oilfield, Iraq (Energies)

 
 

1 february 2023 11:15:41

 
Energies, Vol. 16, Pages 1451: Characteristics of High Flow Zones and a Balanced Development Strategy of a Thick Bioclastic Limestone Reservoir in the Mishrif Formation in X Oilfield, Iraq (Energies)
 


The Mishrif Formation in X Oilfield in Iraq is heterogeneous and has prominent development contradictions, and the development plan required urgent adjustment. Based on data regarding the core, cast thin sections, physical property, mercury injection experiments, and development performance, the main geological factors causing the unbalanced development of the Mishrif Formation are identified, and the corresponding development strategy is proposed. The results show that the High Flow Zones (HFZs) are the main geological factors causing unbalanced production in the thick bioclastic limestone reservoir. There are three kinds of HFZs in MA, MB1, and MB2 intervals, namely, the point shoal type, the tidal channel type, and the platform margin shoal type. All HFZs have different scales and distribution patterns. HFZs have ultra-high permeability and large permeability differences with the surrounding reservoir. During development, the oil mainly comes from HFZs, and the considerable reserves in the low permeability reservoir surrounding the HFZs are difficult to develop. The size of the pore throat of the HFZs greatly varies, and permeability is mainly dominated by the mega-pore throat (>10 μm) and the macro-pore throat (2.5~10 μm). In water flood development, the injected water rapidly advances along the mega-pore throat and the macro-pore throat, and the oil in the micro-pore or medium-pore throats are difficult to be displace. It can be concluded that the Mishrif Formation is vertically heterogeneous. The connectivity of HFZs in different intervals greatly varies. As a result, the Mishrif Formation is divided into three development units, MA, MB1, and MB2 + MC, and production wells are deployed in HFZs. The MA adopts a reverse nine-point injection-production pattern, for which the well spacing is 900 m using a vertical well, and the injection well should avoid the HFZs near the faults. The MB1 adopts an irregular five-point injection-production pattern using a vertical well, and the injection wells are deployed at the edge of the tidal channel or in the lagoon. MB2_1 deploys horizontal production wells, for which the well spacing is 900 m. Horizontal production wells, for which the well spacing is 300 m, are deployed in the lower MB2, and the lateral horizontal production wells are converted into injection wells after water breakthrough, and the horizontal wells deployed in the lower part of MC should moderately inject water.


 
73 viewsCategory: Biophysics, Biotechnology, Physics
 
Energies, Vol. 16, Pages 1452: IEC 62443 Standard for Hydro Power Plants (Energies)
Energies, Vol. 16, Pages 1456: A Bio-Inspired Cluster Optimization Schema for Efficient Routing in Vehicular Ad Hoc Networks (VANETs) (Energies)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten