MyJournals Home  

RSS FeedsRemote Sensing, Vol. 15, Pages 841: The Deep Atmospheric Composition of Jupiter from Thermochemical Calculations Based on Galileo and Juno Data (Remote Sensing)

 
 

2 february 2023 14:06:01

 
Remote Sensing, Vol. 15, Pages 841: The Deep Atmospheric Composition of Jupiter from Thermochemical Calculations Based on Galileo and Juno Data (Remote Sensing)
 


The deep atmosphere of Jupiter is obscured beneath thick clouds. This causes direct observations to be difficult, and thermochemical equilibrium models fill in the observational gaps. This research uses Galileo and Juno data together with the Gibbs free energy minimization code GGchem to update the gas phase and condensation equilibrium chemistry of the deep atmosphere of Jupiter down to 1000 bars. Specifically, the Galileo data provides helium abundances and, with the incorporated Juno data, we use new enrichment values for oxygen, nitrogen, carbon and sulphur. The temperature profile in Jupiter’s deep atmosphere is obtained following recent interior model calculations that fit the gravitational harmonics measured by Juno. Following this approach, we produced pressure–mixing ratio plots for H, He, C, N, O, Na, Mg, Si, P, S and K that give a complete chemical model of all species occurring to abundances down to a 10−20 mixing ratio. The influence of the increased elemental abundances can be directly seen in the concentration of the dominant carriers for each element: the mixing ratio of NH3 increased by a factor of 1.55 as compared with the previous literature, N2 by 5.89, H2O by 1.78, CH4 by 2.82 and H2S by 2.69. We investigate the influence of water enrichment values observed by Juno on these models and find that no liquid water clouds form at the oxygen enrichment measured by Galileo, EH2O = 0.47, while they do form at higher water abundance as measured by Juno. We update the mixing ratios of important gas phase species, such as NH3, H2O, CO, CH4 and H2S, and find that new gas phase species, such as CN−, (NaCN)2, S2O and K+, and new condensates, namely H3PO4 (s), LiCl (s), KCl (s), NaCl (s), NaF (s), MgO (s), Fe (s) and MnS (s), form in the atmosphere.


 
78 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 15, Pages 839: Extension of Scattering Power Decomposition to Dual-Polarization Data for Tropical Forest Monitoring (Remote Sensing)
Remote Sensing, Vol. 15, Pages 842: Remote Sensing Image Change Detection Based on Deep Multi-Scale Multi-Attention Siamese Transformer Network (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten