MyJournals Home  

RSS FeedsMolecules, Vol. 28, Pages 2745: Untargeted Metabolomic Analysis and Chemometrics to Identify Potential Marker Compounds for the Chemical Differentiation of Panax ginseng, P. quinquefolius, P. notoginseng, P. japonicus, and P. japonicus var. major (Molecules)

 
 

18 march 2023 07:32:07

 
Molecules, Vol. 28, Pages 2745: Untargeted Metabolomic Analysis and Chemometrics to Identify Potential Marker Compounds for the Chemical Differentiation of Panax ginseng, P. quinquefolius, P. notoginseng, P. japonicus, and P. japonicus var. major (Molecules)
 


The Panax L. genus is well-known for many positive physiological effects on humans, with major species including P. ginseng, P. quinquefolius, P. notoginseng, P. japonicus, and P. japonicus var. major, the first three of which are globally popular. The combination of UPLC-QTOF-MS and chemometrics were developed to profile “identification markers” enabling their differentiation. The establishment of reliable biomarkers that embody the intrinsic metabolites differentiating species within the same genus is a key in the modernization of traditional Chinese medicine. In this work, the metabolomic differences among these five species were shown, which is critical to ensure their appropriate use. Consequently, 49 compounds were characterized, including 38 identified robust biomarkers, which were mainly composed of saponins and contained small amounts of amino acids and fatty acids. VIP (projection variable importance) was used to identify these five kinds of ginseng. In conclusion, by illustrating the similarities and differences between the five species of ginseng with the use of an integrated strategy of combining UPLC-QTOF-MS and multivariate analysis, we provided a more efficient and more intelligent manner for explaining how the species differ and how their secondary metabolites affect this difference. The most important biomarkers that distinguished the five species included Notoginsenoside-R1, Majonoside R1, Vinaginsenoside R14, Ginsenoside-Rf, and Ginsenoside-Rd.


 
60 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 28, Pages 2744: MSF Enhances Human Antimicrobial Peptide β-Defensin (HBD2 and HBD3) Expression and Attenuates Inflammation via the NF-κB and p38 Signaling Pathways (Molecules)
Molecules, Vol. 28, Pages 2747: Investigation of Molecular Mechanism of Cobalt Porphyrin Catalyzed CO2 Electrochemical Reduction in Ionic Liquid by In-Situ SERS (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten