MyJournals Home  

RSS FeedsIJMS, Vol. 24, Pages 5801: Adiponectin Enhances Fatty Acid Signaling in Human Taste Cells by Increasing Surface Expression of CD36 (International Journal of Molecular Sciences)

 
 

18 march 2023 07:38:24

 
IJMS, Vol. 24, Pages 5801: Adiponectin Enhances Fatty Acid Signaling in Human Taste Cells by Increasing Surface Expression of CD36 (International Journal of Molecular Sciences)
 


Adiponectin, a key metabolic hormone, is secreted into the circulation by fat cells where it enhances insulin sensitivity and stimulates glucose and fatty acid metabolism. Adiponectin receptors are highly expressed in the taste system; however, their effects and mechanisms of action in the modulation of gustatory function remain unclear. We utilized an immortalized human fungiform taste cell line (HuFF) to investigate the effect of AdipoRon, an adiponectin receptor agonist, on fatty acid-induced calcium responses. We showed that the fat taste receptors (CD36 and GPR120) and taste signaling molecules (Gα-gust, PLCβ2, and TRPM5) were expressed in HuFF cells. Calcium imaging studies showed that linoleic acid induced a dose-dependent calcium response in HuFF cells, and it was significantly reduced by the antagonists of CD36, GPR120, PLCβ2, and TRPM5. AdipoRon administration enhanced HuFF cell responses to fatty acids but not to a mixture of sweet, bitter, and umami tastants. This enhancement was inhibited by an irreversible CD36 antagonist and by an AMPK inhibitor but was not affected by a GPR120 antagonist. AdipoRon increased the phosphorylation of AMPK and the translocation of CD36 to the cell surface, which was eliminated by blocking AMPK. These results indicate that AdipoRon acts to increase cell surface CD36 in HuFF cells to selectively enhance their responses to fatty acids. This, in turn, is consistent with the ability of adiponectin receptor activity to alter taste cues associated with dietary fat intake.


 
70 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 24, Pages 5798: Mitochondrial Base Editing: Recent Advances towards Therapeutic Opportunities (International Journal of Molecular Sciences)
IJMS, Vol. 24, Pages 5800: Characterization of the Involvement of Tumour Necrosis Factor (TNF)-α-Stimulated Gene 6 (TSG-6) in Ischemic Brain Injury Caused by Middle Cerebral Artery Occlusion in Mouse (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten