MyJournals Home  

RSS FeedsRemote Sensing, Vol. 15, Pages 1676: A Machine Learning Approach to Derive Aerosol Properties from All-Sky Camera Imagery (Remote Sensing)

 
 

20 march 2023 13:22:18

 
Remote Sensing, Vol. 15, Pages 1676: A Machine Learning Approach to Derive Aerosol Properties from All-Sky Camera Imagery (Remote Sensing)
 


We propose a methodology to derive the aerosol optical depth (AOD) and Angstrom exponent (AE) from calibrated images of an all-sky camera. It is based on a machine learning (ML) approach that establishes a relationship between AERONET measurements of AOD and AE and different signals derived from the principal plane radiance measured by an all-sky camera at three RGB channels. Gaussian process regression (GPR) has been chosen as machine learning method and applied to four models that differ in the input choice: RGB individual signals to predict spectral AOD; red signal only to predict spectral AOD and AE; blue-to-red ratio (BRR) signals to predict spectral AOD and AE; red signals to predict spectral AOD and AE at once. The novelty of our approach mostly relies on obtaining a cloud-screened and smoothed signal that enhances the aerosol features contained in the principal plane radiance and can be applied in partially cloudy conditions. In addition, a quality assurance criterion for the prediction has been also suggested, which significantly improves our results. When applied, our results are very satisfactory for all the models and almost all predictions are close to real values within ±0.02 for AOD and ±0.2 for AE, whereas the MAE is less than 0.005. They show an excellent agreement with AERONET measurements, with correlation coefficients over 0.92. Moreover, more than 87% of our predictions lie within the AERONET uncertainties (±0.01 for AOD, ±0.1 for AE) for all the output parameters of the best model. All the models offer a high degree of numerical stability with negligible sensitivities to the training data, atmospheric conditions and instrumental issues. All this supports the strength and efficiency of our models and the potential of our predictions. The optimum performance shown by our proposed methodology indicates that a well-calibrated all-sky camera can be routinely used to accurately derive aerosol properties. Together, all this makes the all-sky cameras ideal for aerosol research and this work may represent a significant contribution to the aerosol monitoring.


 
72 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 15, Pages 1675: Increasing the Resolution and Spectral Range of Measured Direct Irradiance Spectra for PV Applications (Remote Sensing)
Remote Sensing, Vol. 15, Pages 1677: Mass Balance of the Antarctic Ice Sheet in the Early 21st Century (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten