MyJournals Home  

RSS FeedsIJMS, Vol. 24, Pages 9703: Screening of Mono-, Di- and Trivalent Cationic Dopants for the Enhancement of Thermal Behavior, Kinetics, Structural, Morphological, Surface and Magnetic Properties of CoFe2O4-SiO2 Nanocomposites (International Journal of Molecular Sciences)

 
 

2 june 2023 19:15:18

 
IJMS, Vol. 24, Pages 9703: Screening of Mono-, Di- and Trivalent Cationic Dopants for the Enhancement of Thermal Behavior, Kinetics, Structural, Morphological, Surface and Magnetic Properties of CoFe2O4-SiO2 Nanocomposites (International Journal of Molecular Sciences)
 


CoFe2O4 is a promising functional material for various applications. The impact of doping with different cations (Ag+, Na+, Ca2+, Cd2+, and La3+) on the structural, thermal, kinetics, morphological, surface, and magnetic properties of CoFe2O4 nanoparticles synthesized via the sol-gel method and calcined at 400, 700 and 1000 °C is investigated. The thermal behavior of reactants during the synthesis process reveals the formation of metallic succinates up to 200 °C and their decomposition into metal oxides that further react and form the ferrites. The rate constant of succinates’ decomposition into ferrites calculated using the isotherms at 150, 200, 250, and 300 °C decrease with increasing temperature and depend on the doping cation. By calcination at low temperatures, single-phase ferrites with low crystallinity were observed, while at 1000 °C, the well-crystallized ferrites were accompanied by crystalline phases of the silica matrix (cristobalite and quartz). The atomic force microscopy images reveal spherical ferrite particles covered by an amorphous phase, the particle size, powder surface area, and coating thickness contingent on the doping ion and calcination temperature. The structural parameters estimated via X-ray diffraction (crystallite size, relative crystallinity, lattice parameter, unit cell volume, hopping length, density) and the magnetic parameters (saturation magnetization, remanent magnetization, magnetic moment per formula unit, coercivity, and anisotropy constant) depend on the doping ion and calcination temperature.


 
64 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 24, Pages 9702: Microbial Influences on Immune Checkpoint Inhibitor Response in Melanoma: The Interplay between Skin and Gut Microbiota (International Journal of Molecular Sciences)
IJMS, Vol. 24, Pages 9704: Effect of Organic Selenium on the Homeostasis of Trace Elements, Lipid Peroxidation, and mRNA Expression of Antioxidant Proteins in Mouse Organs (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten