MyJournals Home  

RSS FeedsComparative analyses reveal potential uses of Brachypodium distachyon as a model for cold stress responses in temperate grasses (BMC Plant Biology)

 
 

8 may 2012 18:17:30

 
Comparative analyses reveal potential uses of Brachypodium distachyon as a model for cold stress responses in temperate grasses (BMC Plant Biology)
 


Background: Little is known about the potential of Brachypodium distachyon as a model for low temperature stress responses in Pooideae. The ice recrystallization inhibition proteins (IRIP) genes, fructosyltransferase (FST) genes, and many C-repeat binding factor (CBF) genes are Pooideae specific and important in low temperature responses. Here we use comparative analyses to study conservation and evolution of these gene families in B. distachyon to better understand B. distachyon`s potential as a model species for agriculturally important temperate grasses Results: Brachypodium distachyon contains cold responsive IRIP genes which have evolved through Brachypodium specific gene family expansions. A large cold responsive CBF3 subfamily was identified in B. distachyon, while CBF4 homologs are absent from the genome. No B. distachyon FST gene homologs encode typical core Pooideae FST-motifs and low temperature induced fructan accumulation was dramatically different in B. distachyon compared to core Pooideae species. Conclusions: We conclude that B. distachyon can serve as an interesting model for specific molecular mechanisms involved in low temperature responses in core Pooideae species. However, the evolutionary history of key genes involved in low temperature responses has been different in Brachypodium and core Pooideae species. These differences limit the use of B. distachyon as a model for holistic studies relevant for agricultural core Pooideae species.


 
108 viewsCategory: Botany
 
Protocol: optimised electrophyiological analysis of intact guard cells from Arabidopsis (Plant Methods)
Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis (Plant Journal)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Botany


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten