MyJournals Home  

RSS FeedsA computational model to predict bone metastasis in breast cancer by integrating the dysregulated pathways (BMC Cancer)

 
 

27 august 2014 16:22:33

 
A computational model to predict bone metastasis in breast cancer by integrating the dysregulated pathways (BMC Cancer)
 


Background: Although there are a lot of researches focusing on cancer prognosis or prediction of cancer metastases, it is still a big challenge to predict the risks of cancer metastasizing to a specific organ such as bone. In fact, little work has been published for such a purpose nowadays. Methods: In this work, we propose a Dysregulated Pathway Based prediction Model (DPBM) built on a merged data set with 855 samples. First, we use bootstrapping strategy to select bone metastasis related genes. Based on the selected genes, we then detect out the dysregulated pathways involved in the process of bone metastasis via enrichment analysis. And then we use the discriminative genes in each dysregulated pathway, called as dysregulated genes, to construct a sub-model to forecast the risk of bone metastasis. Finally we combine all sub-models as an ensemble model (DPBM) to predict the risk of bone metastasis. Results: We have validated DPBM on the training, test and independent sets separately, and the results show that DPBM can significantly distinguish the bone metastases risks of patients (with p-values of 3.82E-10, 0.00007 and 0.0003 on three sets respectively). Moreover, the dysregulated genes are generally with higher topological coefficients (degree and betweenness centrality) in the PPI network, which means that they may play critical roles in the biological functions. Further functional analysis of these genes demonstrates that the immune system seems to play an important role in bone-specific metastasis of breast cancer. Conclusions: Each of the dysregulated pathways that are enriched with bone metastasis related genes may uncover one critical aspect of influencing the bone metastasis of breast cancer, thus the ensemble strategy can help to describe the comprehensive view of bone metastasis mechanism. Therefore, the constructed DPBM is robust and able to significantly distinguish the bone metastases risks of patients in both test set and independent set. Moreover, the dysregulated genes in the dysregulated pathways tend to play critical roles in the biological process of bone metastasis of breast cancer.


 
114 viewsCategory: Oncology
 
Genetics: New molecular classification of gastric adenocarcinoma proposed by The Cancer Genome Atlas (Nature Clinical Practice Oncology)
Stereotactive Ablative Radiotherapy (SABR) in inoperable oligometastatic disease from colorectal cancer: a safe and effective approach (BMC Cancer)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Oncology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten