MyJournals Home  

RSS FeedsRemote Sensing, Vol. 9, Pages 538: Comparison of Satellite Reflectance Algorithms for Estimating Phycocyanin Values and Cyanobacterial Total Biovolume in a Temperate Reservoir Using Coincident Hyperspectral Aircraft Imagery and Dense Coincident Surface Observations (Remote Sensing)

 
 

29 may 2017 11:54:56

 
Remote Sensing, Vol. 9, Pages 538: Comparison of Satellite Reflectance Algorithms for Estimating Phycocyanin Values and Cyanobacterial Total Biovolume in a Temperate Reservoir Using Coincident Hyperspectral Aircraft Imagery and Dense Coincident Surface Observations (Remote Sensing)
 


We analyzed 27 established and new simple and therefore perhaps portable satellite phycocyanin pigment reflectance algorithms for estimating cyanobacterial values in a temperate 8.9 km2 reservoir in southwest Ohio using coincident hyperspectral aircraft imagery and dense coincident water surface observations collected from 44 sites within 1 h of image acquisition. The algorithms were adapted to real Compact Airborne Spectrographic Imager (CASI), synthetic WorldView-2, Sentinel-2, Landsat-8, MODIS and Sentinel-3/MERIS/OLCI imagery resulting in 184 variants and corresponding image products. Image products were compared to the cyanobacterial coincident surface observation measurements to identify groups of promising algorithms for operational algal bloom monitoring. Several of the algorithms were found useful for estimating phycocyanin values with each sensor type except MODIS in this small lake. In situ phycocyanin measurements correlated strongly (r2 = 0.757) with cyanobacterial sum of total biovolume (CSTB) allowing us to estimate both phycocyanin values and CSTB for all of the satellites considered except MODIS in this situation.


 
180 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 9, Pages 536: Quantifying the Spatiotemporal Trends of Canopy Layer Heat Island (CLHI) and Its Driving Factors over Wuhan, China with Satellite Remote Sensing (Remote Sensing)
Remote Sensing, Vol. 9, Pages 543: The Use of Unmanned Aerial Systems in Marine Mammal Research (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten