MyJournals Home  

RSS FeedsSensors, Vol. 17, Pages 1831: Investigating the Influence of Temperature on the Kaolinite-Base Synthesis of Zeolite and Urease Immobilization for the Potential Fabrication of Electrochemical Urea Biosensors (Sensors)

 
 

8 august 2017 18:19:06

 
Sensors, Vol. 17, Pages 1831: Investigating the Influence of Temperature on the Kaolinite-Base Synthesis of Zeolite and Urease Immobilization for the Potential Fabrication of Electrochemical Urea Biosensors (Sensors)
 


Temperature-dependent zeolite synthesis has revealed a unique surface morphology, surface area and pore size which influence the immobilization of urease on gold electrode supports for biosensor fabrication. XRD characterization has identified zeolite X (Na) at all crystallization temperatures tested. However, N2 adsorption and desorption results showed a pore size and pore volume of zeolite X (Na) 60 °C, zeolite X (Na) 70 °C and zeolite X (Na) 90 °C which range from 1.92 nm to 2.45 nm and 0.012 cm3/g to 0.061 cm3/g, respectively, with no significant differences. The specific surface area of zeolite X (Na) at 60, 70 and 90 °C was 64 m2/g, 67 m2/g and 113 m2/g, respectively. The pore size, specific surface area and pore volumes of zeolite X (Na) 80 °C and zeolite X (Na) 100 °C were dramatically increased to 4.21 nm, 295 m2/g, 0.762 cm3/g and 4.92 nm, 389 m2/g, 0.837 cm3/g, in that order. The analytical performance of adsorbed urease on zeolite X (Na) surface was also investigated using cyclic voltammetry measurements, and the results showed distinct cathodic and anodic peaks by zeolite X (Na) 80 °C and zeolite X (Na) 100 °C. These zeolites` molar conductance was measured as a function of urea concentration and gave an average polynomial regression fit of 0.948. The findings in this study suggest that certain physicochemical properties, such as crystallization temperature, are critical parameters for improving the morphological properties of zeolites synthesized from natural sources for various biomedical applications.


 
119 viewsCategory: Chemistry, Physics
 
Materials, Vol. 10, Pages 917: Modeling Adhesive Anchors in a Discrete Element Framework (Materials)
Materials, Vol. 10, Pages 921: A Unique 3D Nitrogen-Doped Carbon Composite as High-Performance Oxygen Reduction Catalyst (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten