MyJournals Home  

RSS FeedsRemote Sensing, Vol. 9, Pages 967: Developments in Landsat Land Cover Classification Methods: A Review (Remote Sensing)

 
 

19 september 2017 13:33:50

 
Remote Sensing, Vol. 9, Pages 967: Developments in Landsat Land Cover Classification Methods: A Review (Remote Sensing)
 


Land cover classification of Landsat images is one of the most important applications developed from Earth observation satellites. The last four decades were marked by different developments in land cover classification methods of Landsat images. This paper reviews the developments in land cover classification methods for Landsat images from the 1970s to date and highlights key ways to optimize analysis of Landsat images in order to attain the desired results. This review suggests that the development of land cover classification methods grew alongside the launches of a new series of Landsat sensors and advancements in computer science. Most classification methods were initially developed in the 1970s and 1980s; however, many advancements in specific classifiers and algorithms have occurred in the last decade. The first methods of land cover classification to be applied to Landsat images were visual analyses in the early 1970s, followed by unsupervised and supervised pixel-based classification methods using maximum likelihood, K-means and Iterative Self-Organizing Data Analysis Technique (ISODAT) classifiers. After 1980, other methods such as sub-pixel, knowledge-based, contextual-based, object-based image analysis (OBIA) and hybrid approaches became common in land cover classification. Attaining the best classification results with Landsat images demands particular attention to the specifications of each classification method such as selecting the right training samples, choosing the appropriate segmentation scale for OBIA, pre-processing calibration, choosing the right classifier and using suitable Landsat images. All these classification methods applied on Landsat images have strengths and limitations. Most studies have reported the superior performance of OBIA on different landscapes such as agricultural areas, forests, urban settlements and wetlands; however, OBIA has challenges such as selecting the optimal segmentation scale, which can result in over or under segmentation, and the low spatial resolution of Landsat images. Other classification methods have the potential to produce accurate classification results when appropriate procedures are followed. More research is needed on the application of hybrid classifiers as they are considered more complex methods for land cover classification.


 
106 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 9, Pages 965: Optimal Weight Design Approach for the Geometrically-Constrained Matching of Satellite Stereo Images (Remote Sensing)
Remote Sensing, Vol. 9, Pages 970: Impacts of Urbanization on Vegetation Phenology over the Past Three Decades in Shanghai, China (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten