MyJournals Home  

RSS FeedsEnergies, Vol. 10, Pages 1843: A Simplified Top-Oil Temperature Model for Transformers Based on the Pathway of Energy Transfer Concept and the Thermal-Electrical Analogy (Energies)

 
 

11 november 2017 12:51:09

 
Energies, Vol. 10, Pages 1843: A Simplified Top-Oil Temperature Model for Transformers Based on the Pathway of Energy Transfer Concept and the Thermal-Electrical Analogy (Energies)
 


This paper presents an alternative approach to determine the simplified top-oil temperature (TOT) based on the pathway of energy transfer and thermal-electrical analogy concepts. The main contribution of this study is the redefinition of the nonlinear thermal resistance based on these concepts. An alternative approximation of convection coefficient, h, based on heat transfer theory was proposed which eliminated the requirement of viscosity. In addition, the lumped capacitance method was applied to the thermal-electrical analogy to derive the TOT thermal equivalent equation in differential form. The TOT thermal model was evaluated based on the measured TOT of seven transformers with either oil natural air natural (ONAN) or oil natural air forced (ONAF) cooling modes obtained from temperature rise tests. In addition, the performance of the TOT thermal model was tested on step-loading of a transformer with an ONAF cooling mode obtained from previous studies. A comparison between the TOT thermal model and the existing TOT Thermal-Electrical, Exponential (IEC 60076-7), and Clause 7 (IEEE C57.91-1995) models was also carried out. It was found that the measured TOT of seven transformers are well represented by the TOT thermal model where the highest maximum and root mean square (RMS) errors are 6.66 °C and 2.76 °C, respectively. Based on the maximum and RMS errors, the TOT thermal model performs better than Exponential and Clause 7 models and it is comparable with the Thermal-Electrical 1 (TE1) and Thermal-Electrical 2 (TE2) models. The same pattern is found for the TOT thermal model under step-loading where the maximum and RMS errors are 5.77 °C and 2.02 °C.


 
167 viewsCategory: Biophysics, Biotechnology, Physics
 
Energies, Vol. 10, Pages 1844: Novel Carbon Materials in the Cathode Formulation for High Rate Rechargeable Hybrid Aqueous Batteries (Energies)
Energies, Vol. 10, Pages 1849: Analysis of Analytical Models Developed under the Uniaxial Strain Condition for Predicting Coal Permeability during Primary Depletion (Energies)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten