MyJournals Home  

RSS FeedsRemote Sensing, Vol. 10, Pages 775: Machine Learning Automatic Model Selection Algorithm for Oceanic Chlorophyll-a Content Retrieval (Remote Sensing)

 
 

24 may 2018 18:00:08

 
Remote Sensing, Vol. 10, Pages 775: Machine Learning Automatic Model Selection Algorithm for Oceanic Chlorophyll-a Content Retrieval (Remote Sensing)
 


Ocean Color remote sensing has a great importance in monitoring of aquatic environments. The number of optical imaging sensors onboard satellites has been increasing in the past decades, allowing to retrieve information about various water quality parameters of the world’s oceans and inland waters. This is done by using various regression algorithms to retrieve water quality parameters from remotely sensed multi-spectral data for the given sensor and environment. There is a great number of such algorithms for estimating water quality parameters with different performances. Hence, choosing the most suitable model for a given purpose can be challenging. This is especially the fact for optically complex aquatic environments. In this paper, we present a concept to an Automatic Model Selection Algorithm (AMSA) aiming at determining the best model for a given matchup dataset. AMSA automatically chooses between regression models to estimate the parameter in interest. AMSA also determines the number and combination of features to use in order to obtain the best model. We show how AMSA can be built for a certain application. The example AMSA we present here is designed to estimate oceanic Chlorophyll-a for global and optically complex waters by using four Machine Learning (ML) feature ranking methods and three ML regression models. We use a synthetic and two real matchup datasets to find the best models. Finally, we use two images from optically complex waters to illustrate the predictive power of the best models. Our results indicate that AMSA has a great potential to be used for operational purposes. It can be a useful objective tool for finding the most suitable model for a given sensor, water quality parameter and environment.


 
65 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 10, Pages 776: SAR Target Recognition in Large Scene Images via Region-Based Convolutional Neural Networks (Remote Sensing)
Remote Sensing, Vol. 10, Pages 774: Erratum: Nasonova, S. et al. Linking Regional Winter Sea Ice Thickness and Surface Roughness to Spring Melt Pond Fraction on Landfast Arctic Sea Ice. Remote Sens. 2018, 10, 37 (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten