MyJournals Home  

RSS FeedsP19 Cells as a Model for Studying the Circadian Clock in Stem Cells before and after Cell Differentiation (Journal of Circadian Rhythms)

 
 

25 may 2018 00:02:07

 
P19 Cells as a Model for Studying the Circadian Clock in Stem Cells before and after Cell Differentiation (Journal of Circadian Rhythms)
 




In mammals, circadian rhythmicity is sustained via a transcriptional/translational feedback loop referred to as the canonical molecular circadian clock. Circadian rhythm is absent in undifferentiated embryonic stem cells; it begins only after differentiation. We used pluripotent P19 embryonal carcinoma stem cells to check the biological clock before and after differentiation into neurons using retinoic acid. We show that the central clock genes ARNTL (Bmal), Per2 and Per3, and the peripheral clock genes Rev-erb-? and ROR-?, oscillate before and after differentiation, as does the expression of the neuronal differentiation markers Hes5, ?-3-tubulin (Tubb3) and Stra13, but not Neurod1. Furthermore, the known clock-modulating compounds ERK, EGFR, Pi3K, p38, DNA methylation and Sirtiun inhibitors, in addition to Rev-erb-? ligands, modulate the expression of central and peripheral clock genes. Interestingly Sirtinol, Sirt1 and Sirt2 inhibitors had the greatest significant effect on the expression of clock genes, and increased Hes5 and Tubb3 expression during neuronal differentiation. Our findings reveal a new frontier of circadian clock research in stem cells: contrary to what has been published previously, we have shown the clock to be functional and to oscillate, even in undifferentiated stem cells. Modulating the expression of clock genes using small molecules could affect stem cell differentiation. Published on 2018-05-18 00:00:00


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
54 viewsCategory: Neurology
 
Prefrontal cortex as a meta-reinforcement learning system (Nature Neuroscience)
Specializations for reward-guided decision-making in the primate ventral prefrontal cortex (Nature Reviews Neuroscience)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Neurology

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2018 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn