MyJournals Home  

RSS FeedsMaterials, Vol. 11, Pages 855: A Modified Back Propagation Artificial Neural Network Model Based on Genetic Algorithm to Predict the Flow Behavior of 5754 Aluminum Alloy (Materials)

 
 

25 may 2018 06:01:21

 
Materials, Vol. 11, Pages 855: A Modified Back Propagation Artificial Neural Network Model Based on Genetic Algorithm to Predict the Flow Behavior of 5754 Aluminum Alloy (Materials)
 


In order to predict flow behavior and find the optimum hot working processing parameters for 5754 aluminum alloy, the experimental flow stress data obtained from the isothermal hot compression tests on a Gleeble-3500 thermo-simulation apparatus, with different strain rates (0.1–10 s–1) and temperatures (300–500 °C), were used to construct the constitutive models of the strain-compensation Arrhenius (SA) and back propagation (BP) artificial neural network (ANN). In addition, an optimized BP–ANN model based on the genetic algorithm (GA) was established. Furthermore, the predictability of the three models was evaluated by the statistical indicators, including the correlation coefficient (R) and average absolute relative error (AARE). The results showed that the R of the SA model, BP–ANN model, and ANN–GA model were 0.9918, 0.9929, and 0.9999, respectively, while the AARE of these models was found to be 3.2499–5.6774%, 0.0567–5.4436% and 0.0232–1.0485%, respectively. The prediction error of the SA model was high at 400 °C. It was more accurate to use the BP–ANN model to determine the flow behavior compared to the SA model. However, the BP–ANN model had more instability at 300 °C and a true strain in the range of 0.4–0.6. When compared with the SA model and BP–ANN model, the ANN–GA model had a more efficient and more accurate prediction ability during the whole deformation process. Furthermore, the dynamic softening characteristic was analyzed by the flow curves. All curves showed that 5754 aluminum alloy showed the typical rheological characteristics. The flow stress rose rapidly with increasing strain until it reached a peak. After this, the flow stress remained constant, which demonstrates a steady flow softening phenomenon. Besides, the flow stress and the required variables to reach the steady state deformation increased with increasing strain rate and decreasing temperature.


 
65 viewsCategory: Chemistry, Physics
 
Materials, Vol. 11, Pages 856: A Polymer Plugging Gel for the Fractured Strata and Its Application (Materials)
Materials, Vol. 11, Pages 854: The Influence of the External Signal Modulation Waveform and Frequency on the Performance of a Photonic Forced Oscillator (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten