MyJournals Home  

RSS FeedsRemote Sensing, Vol. 10, Pages 894: Deformation Response of Seismogenic Faults to the Wenchuan MS 8.0 Earthquake: A Case Study for the Southern Segment of the Longmenshan Fault Zone (Remote Sensing)

 
 

18 june 2018 11:00:47

 
Remote Sensing, Vol. 10, Pages 894: Deformation Response of Seismogenic Faults to the Wenchuan MS 8.0 Earthquake: A Case Study for the Southern Segment of the Longmenshan Fault Zone (Remote Sensing)
 


The spatiotemporal deformation response of a seismogenic fault to a large earthquake is of great significance to understanding the nucleation and occurrence of the next strong earthquake. The Longmeshan fault, where the 2008 Wenchuan MS 8.0 earthquake and 2013 Lushan MS 7.0 earthquake occurred, provides an opportunity for us to study this important issue. Based on the GPS observations, we exploit the deformation response of the Southern Segment of the Longmenshan Fault (SSLMF) to the Wenchuan earthquake. The results are as follows: (1) during the co-seismic and post-seismic processes of the Wenchuan earthquake, the deformation is dominated by a continuous pattern in the SSLMF, which is different from the rupture pattern in the middle-northern segment of the Longmenshan Fault (LMF). Quantitatively, the compressive strain present between 2008 and 2013 was equal to the strain accumulation of 69 years during the interseismic period in the SSLMF. If the statistics scope is restricted to the eastern region of the Anxian-Guanxian Fault (AGF), which covers the Lushan source area (Abbr.: Eastern Region), the value is about 25 years; (2) After the Wenchuan earthquake, the strain accumulation pattern changes significantly. First, the deformation adjustment (especially the shear deformation) in the region that crosses the Maoxian-Wenchuan Fault (MWF) and Beichuan-Yingxiu Fault (BYF) (Abbr.: Western Region) is significantly greater than that in the Eastern Region. Furthermore, the crustal shortening is significant in the Eastern Region with minor adjustments in shear deformation. Second, the azimuth angles of the principal compressive strain rate in both regions show significant adjustments, which change fast in the first year of the observation period and then turn into the stable state. In general, the deformation responses of the SSLMF reveal that the Wenchuan earthquake promotes the occurrence of the Lushan earthquake. Their differences in the spatiotemporal domain can be attributed to the influence of afterslip, viscous relaxation of the lithosphere, mechanical parameters and block movement.


 
66 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 10, Pages 896: High Temporal Resolution Refractivity Retrieval from Radar Phase Measurements (Remote Sensing)
Remote Sensing, Vol. 10, Pages 895: Where We Live--A Summary of the Achievements and Planned Evolution of the Global Urban Footprint (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten