MyJournals Home  

RSS FeedsConnective tissue growth factor (CCN2) is a matricellular preproprotein controlled by proteolytic activation [Cell Biology] (Journal of Biological Chemistry)

 
 

16 november 2018 23:00:08

 
Connective tissue growth factor (CCN2) is a matricellular preproprotein controlled by proteolytic activation [Cell Biology] (Journal of Biological Chemistry)
 


Connective tissue growth factor (CTGF; now often referred to as CCN2) is a secreted protein predominantly expressed during development, in various pathological conditions that involve enhanced fibrogenesis and tissue fibrosis, and in several cancers and is currently an emerging target in several early-phase clinical trials. Tissues containing high CCN2 activities often display smaller degradation products of full-length CCN2 (FL-CCN2). Interpretation of these observations is complicated by the fact that a uniform protein structure that defines biologically active CCN2 has not yet been resolved. Here, using DG44 CHO cells engineered to produce and secrete FL-CCN2 and cell signaling and cell physiological activity assays, we demonstrate that FL-CCN2 is itself an inactive precursor and that a proteolytic fragment comprising domains III (thrombospondin type 1 repeat) and IV (cystine knot) appears to convey all biologically relevant activities of CCN2. In congruence with these findings, purified FL-CCN2 could be cleaved and activated following incubation with matrix metalloproteinase activities. Furthermore, the C-terminal fragment of CCN2 (domains III and IV) also formed homodimers that were ~20-fold more potent than the monomeric form in activating intracellular phosphokinase cascades. The homodimer elicited activation of fibroblast migration, stimulated assembly of focal adhesion complexes, enhanced RANKL-induced osteoclast differentiation of RAW264.7 cells, and promoted mammosphere formation of MCF-7 mammary cancer cells. In conclusion, CCN2 is synthesized and secreted as a preproprotein that is autoinhibited by its two N-terminal domains and requires proteolytic processing and homodimerization to become fully biologically active.


 
136 viewsCategory: Biochemistry
 
Gain-of-function screen of {alpha}-transducin identifies an essential phenylalanine residue necessary for full effector activation [Enzymology] (Journal of Biological Chemistry)
Synergistic effects of functionally distinct substitutions in {beta}-lactamase variants shed light on the evolution of bacterial drug resistance [Microbiology] (Journal of Biological Chemistry)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Biochemistry


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten