MyJournals Home  

RSS FeedsRemote Sensing, Vol. 10, Pages 1822: TomoSAR Imaging for the Study of Forested Areas: A Virtual Adaptive Beamforming Approach (Remote Sensing)

 
 

19 november 2018 01:00:17

 
Remote Sensing, Vol. 10, Pages 1822: TomoSAR Imaging for the Study of Forested Areas: A Virtual Adaptive Beamforming Approach (Remote Sensing)
 


Among the objectives of the upcoming space missions Tandem-L and BIOMASS, is the 3-D representation of the global forest structure via synthetic aperture radar (SAR) tomography (TomoSAR). To achieve such a goal, modern approaches suggest solving the TomoSAR inverse problems by exploiting polarimetric diversity and structural model properties of the different scattering mechanisms. This way, the related tomographic imaging problems are treated in descriptive regularization settings, applying modern non-parametric spatial spectral analysis (SSA) techniques. Nonetheless, the achievable resolution of the commonly performed SSA-based estimators highly depends on the span of the tomographic aperture; furthermore, irregular sampling and non-uniform constellations sacrifice the attainable resolution, introduce artifacts and increase ambiguity. Overcoming these drawbacks, in this paper, we address a new multi-stage iterative technique for feature-enhanced TomoSAR imaging that aggregates the virtual adaptive beamforming (VAB)-based SSA approach, with the wavelet domain thresholding (WDT) regularization framework, which we refer to as WAVAB (WDT-refined VAB). First, high resolution imagery is recovered applying the descriptive experiment design regularization (DEDR)-inspired reconstructive processing. Next, the additional resolution enhancement with suppression of artifacts is performed, via the WDT-based sparsity promoting refinement in the wavelet transform (WT) domain. Additionally, incorporation of the sum of Kronecker products (SKP) decomposition technique at the pre-processing stage, improves ground and canopy separation and allows for the utilization of different better adapted TomoSAR imaging techniques, on the ground and canopy structural components, separately. The feature enhancing capabilities of the novel robust WAVAB TomoSAR imaging technique are corroborated through the processing of airborne data of the German Aerospace Center (DLR), providing detailed volume height profiles reconstruction, as an alternative to the competing non-parametric SSA-based methods.


 
99 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 10, Pages 1827: Change Detection in Hyperspectral Images Using Recurrent 3D Fully Convolutional Networks (Remote Sensing)
Remote Sensing, Vol. 10, Pages 1826: The VIIRS Sea-Ice Albedo Product Generation and Preliminary Validation (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten