MyJournals Home  

RSS FeedsIJMS, Vol. 19, Pages 3980: Biocompatibility and Biological Efficiency of Inorganic Calcium Filled Bacterial Cellulose Based Hydrogel Scaffolds for Bone Bioengineering (International Journal of Molecular Sciences)

 
 

13 december 2018 03:00:03

 
IJMS, Vol. 19, Pages 3980: Biocompatibility and Biological Efficiency of Inorganic Calcium Filled Bacterial Cellulose Based Hydrogel Scaffolds for Bone Bioengineering (International Journal of Molecular Sciences)
 


The principal focus of this work is the in-depth analysis of the biological efficiency of inorganic calcium-filled bacterial cellulose (BC) based hydrogel scaffolds for their future use in bone tissue engineering/bioengineering. Inorganic calcium was filled in the form of calcium phosphate (β-tri calcium phosphate (β-TCP) and hydroxyapatite (HA)) and calcium carbonate (CaCO3). The additional calcium, CaCO3 was incorporated following in vitro bio-mineralization. Cell viability study was performed with the extracts of BC based hydrogel scaffolds: BC-PVP, BC-CMC; BC-PVP-β-TCP/HA, BC-CMC-β-TCP/HA and BC-PVP-β-TCP/HA-CaCO3, BC-CMC-β-TCP/HA-CaCO3; respectively. The biocompatibility study was performed with two different cell lines, i.e., human fibroblasts, Lep-3 and mouse bone explant cells. Each hydrogel scaffold has facilitated notable growth and proliferation in presence of these two cell types. Nevertheless, the percentage of DNA strand breaks was higher when cells were treated with BC-CMC based scaffolds i.e., BC-CMC-β-TCP/HA and BC-CMC-β-TCP/HA-CaCO3. On the other hand, the apoptosis of human fibroblasts, Lep-3 was insignificant in BC-PVP-β-TCP/HA. The scanning electron microscopy confirmed the efficient adhesion and growth of Lep-3 cells throughout the surface of BC-PVP and BC-PVP-β-TCP/HA. Hence, among all inorganic calcium filled hydrogel scaffolds, ‘BC-PVP-β-TCP/HA’ was recommended as an efficient tissue engineering scaffold which could facilitate the musculoskeletal (i.e., bone tissue) engineering/bioengineering.


 
93 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 19, Pages 3981: Hydrogen Sulfide-Mediated Activation of O-Acetylserine (Thiol) Lyase and l/d-Cysteine Desulfhydrase Enhance Dehydration Tolerance in Eruca sativa Mill (International Journal of Molecular Sciences)
IJMS, Vol. 19, Pages 3978: The Epigenetic Regulation of HCC Metastasis (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten