MyJournals Home  

RSS FeedsEnergies, Vol. 12, Pages 83: A Comparative Computational Fluid Dynamic Study on the Effects of Terrain Type on Hub-Height Wind Aerodynamic Properties (Energies)

 
 

29 december 2018 04:00:09

 
Energies, Vol. 12, Pages 83: A Comparative Computational Fluid Dynamic Study on the Effects of Terrain Type on Hub-Height Wind Aerodynamic Properties (Energies)
 


The increased adoption of wind power has generated global discourse in wind energy meteorology. Studies based on turbine performances show a deviation of actual output from power curve output, thereby yielding errors irrespective of the turbine site. Understanding the cause of these errors is essential for wind power optimization, thus necessitating investigation into site-specific effects on turbine performance and operation. Therefore, Computational Fluid Dynamics simulations of hub-height wind aerodynamic properties were conducted based on the k-ε turbulence closure model Reynolds Averaged Navier Stokes equations for three terrains. To isolate terrain-induced effects, the same 40 m above mean sea level wind climatology was imposed on all three terrains. For the four wind directions considered, turbulence intensity (TI) was least in the offshore terrain at about 5–7% but ranged considerably higher from 4–18% for the coastal and island terrain. TI on crests also increased significantly by up to 15% upstream of wind direction for the latter terrains. Inflow angle ranged from −15° to +15° in both coastal and island terrains but remained at <+1° in the offshore terrain. Hellman exponent increased from between factors of 2–4 in the other two terrains relative to that of the offshore terrain. Wind speed-up varied from about 1.06–1.13, accounting for a range of 17–30% difference in power output from a hypothetical operational 2 MW turbine output placed in the three different terrains. Turbine loading, fatigue, efficiency, and life cycle can also be impacted by the variations noted. While adopting a site-specific power curve may help minimize errors and losses, collecting these aerodynamic data alongside wind speed and direction is the future for wind power optimization under big data and machine learning.


 
63 viewsCategory: Biophysics, Biotechnology, Physics
 
Energies, Vol. 12, Pages 84: Fractional-Order Model Predictive Frequency Control of an Islanded Microgrid (Energies)
Energies, Vol. 12, Pages 82: A Novel Electrochemical Hydrogen Storage-Based Proton Battery for Renewable Energy Storage (Energies)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten