MyJournals Home  

RSS FeedsIJMS, Vol. 20, Pages 126: The Effects of Systemic and Local Acidosis on Insulin Resistance and Signaling (International Journal of Molecular Sciences)

 
 

30 december 2018 15:00:13

 
IJMS, Vol. 20, Pages 126: The Effects of Systemic and Local Acidosis on Insulin Resistance and Signaling (International Journal of Molecular Sciences)
 


Most pathological conditions that cause local or systemic acidosis by overcoming the buffering activities of body fluids overlap with those diseases that are characterized by glucose metabolic disorders, including diabetes mellitus, inflammation, and cancer. This simple observation suggests the existence of a strong relationship between acidosis and insulin metabolism or insulin receptor signaling. In this review, we summarized the current knowledge on the activity of insulin on the induction of acidosis and, vice versa, on the effects of changes of extracellular and intracellular pH on insulin resistance. Insulin influences acidosis by promoting glycolysis. Although with an unclear mechanism, the lowering of pH, in turn, inhibits insulin sensitivity or activity. In addition to ketoacidosis that is frequently associated with diabetes, other important and more complex factors are involved in this delicate feedback mechanism. Among these, in this review we discussed the acid-mediated inhibiting effects on insulin binding affinity to its receptor, on glycolysis, on the recycling of glucose transporters, and on insulin secretion via transforming growth factor β (TGF-β) activity by pancreatic β-cells. Finally, we revised current data available on the mutual interaction between insulin signaling and the activity of ion/proton transporters and pH sensors, and on how acidosis may enhance insulin resistance through the Nuclear Factor kappa B (NF-κB) inflammatory pathway.


 
109 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 20, Pages 113: LAIPT: Lysine Acetylation Site Identification with Polynomial Tree (International Journal of Molecular Sciences)
IJMS, Vol. 20, Pages 125: Olive Biophenols Reduces Alzheimer`s Pathology in SH-SY5Y Cells and APPswe Mice (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten