MyJournals Home  

RSS FeedsGlobal analysis of protein homomerization in Saccharomyces cerevisiae [RESOURCES] (Genome Research)


5 january 2019 17:00:07

Global analysis of protein homomerization in Saccharomyces cerevisiae [RESOURCES] (Genome Research)

In vivo analyses of the occurrence, subcellular localization, and dynamics of proteinā€“protein interactions (PPIs) are important issues in functional proteomic studies. The bimolecular fluorescence complementation (BiFC) assay has many advantages in that it provides a reliable way to detect PPIs in living cells with minimal perturbation of the structure and function of the target proteins. Previously, to facilitate the application of the BiFC assay to genome-wide analysis of PPIs, we generated a collection of yeast strains expressing full-length proteins tagged with the N-terminal fragment of Venus (VN), a yellow fluorescent protein variant, from their own native promoters. In the present study, we constructed a VC (the C-terminal fragment of Venus) fusion library consisting of 5671 MATĪ± strains expressing C-terminally VC-tagged proteins (representing ~91% of the yeast proteome). For genome-wide analysis of protein homomer formation, we mated each strain in the VC fusion library with its cognate strain in the VN fusion library and performed the BiFC assay. From this analysis, we identified 186 homomer candidates. We further investigated the functional relevance of the homomerization of Pln1, a yeast perilipin. Our data set provides a useful resource for understanding the physiological roles of protein homomerization. Furthermore, the VC fusion library together with the VN fusion library will provide a valuable platform to systematically analyze PPIs in the natural cellular context. Digg Facebook Google StumbleUpon Twitter
56 viewsCategory: Bioinformatics, Genetics, Genomics
Comparison and assessment of family- and population-based genotype imputation methods in large pedigrees [RESOURCES] (Genome Research)
A physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci [RESOURCES] (Genome Research)
blog comments powered by Disqus
The latest issues of all your favorite science journals on one page


Register | Retrieve



Use these buttons to bookmark us: Digg Facebook Google StumbleUpon Twitter

Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn