MyJournals Home  

RSS FeedsMolecules, Vol. 24, Pages 330: TiO2 Photocatalysis for Transfer Hydrogenation (Molecules)

 
 

18 january 2019 14:01:15

 
Molecules, Vol. 24, Pages 330: TiO2 Photocatalysis for Transfer Hydrogenation (Molecules)
 


Catalytic transfer hydrogenation reactions, based on hydrogen sources other than gaseous H2, are important processes that are preferential in both laboratories and factories. However, harsh conditions, such as high temperature, are usually required for most transition-metal catalytic and organocatalytic systems. Moreover, non-volatile hydrogen donors such as dihydropyridinedicarboxylate and formic acid are often required in these processes which increase the difficulty in separating products and lowered the whole atom economy. Recently, TiO2 photocatalysis provides mild and facile access for transfer hydrogenation of C=C, C=O, N=O and C-X bonds by using volatile alcohols and amines as hydrogen sources. Upon light excitation, TiO2 photo-induced holes have the ability to oxidatively take two hydrogen atoms off alcohols and amines under room temperature. Simultaneously, photo-induced conduction band electrons would combine with these two hydrogen atoms and smoothly hydrogenate multiple bonds and/or C-X bonds. It is heartening that practices and principles in the transfer hydrogenations of substrates containing C=C, C=O, N=O and C-X bond based on TiO2 photocatalysis have overcome a lot of the traditional thermocatalysis’ limitations and flaws which usually originate from high temperature operations. In this review, we will introduce the recent paragon examples of TiO2 photocatalytic transfer hydrogenations used in (1) C=C and C≡C (2) C=O and C=N (3) N=O substrates and in-depth discuss basic principle, status, challenges and future directions of transfer hydrogenation mediated by TiO2 photocatalysis.


 
39 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 24, Pages 331: Novel Cucurbitane Triterpenes from the Tubers of Hemsleya amabilis with Their Cytotoxic Acitivity (Molecules)
Molecules, Vol. 24, Pages 329: Phytochemical Composition and Antioxidant Activities of Two Different Color Chrysanthemum Flower Teas (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten