MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 198: A 3D Point Cloud Filtering Method for Leaves Based on Manifold Distance and Normal Estimation (Remote Sensing)

 
 

21 january 2019 10:04:26

 
Remote Sensing, Vol. 11, Pages 198: A 3D Point Cloud Filtering Method for Leaves Based on Manifold Distance and Normal Estimation (Remote Sensing)
 


Leaves are used extensively as an indicator in research on tree growth. Leaf area, as one of the most important index in leaf morphology, is also a comprehensive growth index for evaluating the effects of environmental factors. When scanning tree surfaces using a 3D laser scanner, the scanned point cloud data usually contain many outliers and noise. These outliers can be clusters or sparse points, whereas the noise is usually non-isolated but exhibits different attributes from valid points. In this study, a 3D point cloud filtering method for leaves based on manifold distance and normal estimation is proposed. First, leaf was extracted from the tree point cloud and initial clustering was performed as the preprocessing step. Second, outlier clusters filtering and outlier points filtering were successively performed using a manifold distance and truncation method. Third, noise points in each cluster were filtered based on the local surface normal estimation. The 3D reconstruction results of leaves after applying the proposed filtering method prove that this method outperforms other classic filtering methods. Comparisons of leaf areas with real values and area assessments of the mean absolute error (MAE) and mean absolute error percent (MAE%) for leaves in different levels were also conducted. The root mean square error (RMSE) for leaf area was 2.49 cm2. The MAE values for small leaves, medium leaves and large leaves were 0.92 cm2, 1.05 cm2 and 3.39 cm2, respectively, with corresponding MAE% values of 10.63, 4.83 and 3.8. These results demonstrate that the method proposed can be used to filter outliers and noise for 3D point clouds of leaves and improve 3D leaf visualization authenticity and leaf area measurement accuracy.


 
96 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 199: Refined Two-Stage Programming Approach of Phase Unwrapping for Multi-Baseline SAR Interferograms Using the Unscented Kalman Filter (Remote Sensing)
Remote Sensing, Vol. 11, Pages 197: Evaluation of Informative Bands Used in Different PLS Regressions for Estimating Leaf Biochemical Contents from Hyperspectral Reflectance (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten