MyJournals Home  

RSS FeedsSustainability, Vol. 11, Pages 520: Selenium Distribution and Translocation in Rice (Oryza sativa L.) under Different Naturally Seleniferous Soils (Sustainability)

 
 

21 january 2019 14:00:02

 
Sustainability, Vol. 11, Pages 520: Selenium Distribution and Translocation in Rice (Oryza sativa L.) under Different Naturally Seleniferous Soils (Sustainability)
 




Selenium (Se) accumulation in plant foods may be providing dietary Se to minimize the health problems related to Se deficiency. In this study, rice plants were cultivated in different naturally seleniferous soils (0.5–1.5 mg Se kg−1). Se concentration in rice plant tissues was analysed, and the distribution and translocation of Se in rice were also studied. The effect of exogenous Se on yield and Se concentration in rice grain was also investigated by spraying Na2SeO3 (15 mg L−1, 15 g ha−1). Results show that Se concentration in root, straw and grain of rice was increased with increased concentrations of Se in seleniferous soils. The root accumulated higher Se than straw and grain under the same naturally seleniferous soil. Spraying Se significantly increased Se concentration in grain, hull, brown rice and polished rice compared with spraying water. Se concentration in the grain fractions was in the following order: Bran > brown rice > whole grain > polished rice > hull. About 13.7% Se in wholegrain was discarded by milling process if about 6.9% of it was polished as bran. Se-enriched rice could be produced in naturally seleniferous soils with Se concentration from 0.5 to 1.0 mg kg−1, and this polished rice would provide enough Se (60–80 μg day−1) to satisfy the human requirement. Therefore, naturally seleniferous soils may be an effective way to produce Se-enriched rice without spraying Se fertilizer, which will be more economically feasible and environmentally friendly for without exogenous Se added to the soils or plants. However, the polished rice and brown rice, produced by spraying Na2SeO3 (15 g ha−1) or grown in soil with total Se upto 1.5 mg kg−1 was not suitable for daily human consumption, unless diluted with Se-deficient rice to meet the standard (≤0.3 mg Se kg−1). This study imparted a better understanding of the utilization of seleniferous soils and Se-enriched rice for human health and food safety.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
25 viewsCategory: Ecology
 
Sustainability, Vol. 11, Pages 521: Comparative Analysis of the Energy Sector Development Trends and Forecast of Final Energy Demand in the Baltic States (Sustainability)
Sustainability, Vol. 11, Pages 519: Pozzolanic Potential and Mechanical Performance of Wheat Straw Ash Incorporated Sustainable Concrete (Sustainability)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Ecology

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn