MyJournals Home  

RSS FeedsMolecules, Vol. 24, Pages 415: Characteristics of Free Amino Acids (the Quality Chemical Components of Tea) under Spatial Heterogeneity of Different Nitrogen Forms in Tea (Camellia sinensis) Plants (Molecules)

 
 

27 january 2019 03:00:05

 
Molecules, Vol. 24, Pages 415: Characteristics of Free Amino Acids (the Quality Chemical Components of Tea) under Spatial Heterogeneity of Different Nitrogen Forms in Tea (Camellia sinensis) Plants (Molecules)
 


Nitrogen (N) forms are closely related to tea quality, however, little is known about the characteristics of quality chemical components in tea under the spatial heterogeneity of different N forms. In this study, a split-root system, high performance liquid chromatography (HPLC), and root analysis system (WinRHIZO) were used to investigate free amino acids (FAAs) and root length of tea plants under the spatial heterogeneity of different N forms. Uniform. (U.) ammonium (NH4+) (both compartments had NH4+), U. nitrate (NO3−) (both compartments had NO3−), Split. (Sp.) NH4+ (one of the compartments had NH4+), and Sp. NO3− (the other compartment had NO3−) were performed. The ranking of total FAAs in leaves were as follows: U. NH4+ > Sp. NH4+/Sp. NO3− > U. NO3−. The FAA characteristics of Sp. NH4+/Sp. NO3− were more similar to those of U. NO3−. The contents of the important FAAs (aspartic acid, glutamic acid, and theanine) that determine the quality of tea, increased significantly in U. NH4+. The total root length in U. NH4+ was higher than that in the other treatments. More serious root browning was found in U. NO3−. In conclusion, NH4+ improved the accumulations of FAAs in tea leaves, which might be attributed to the root development.


 
88 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 24, Pages 416: Design, Synthesis, Anticancer Evaluation and Molecular Modeling of Novel Estrogen Derivatives (Molecules)
Molecules, Vol. 24, Pages 414: Inhibitory Effects of Roseoside and Icariside E4 Isolated from a Natural Product Mixture (No-ap) on the Expression of Angiotensin II Receptor 1 and Oxidative Stress in Angiotensin II-Stimulated H9C2 Cells (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten