MyJournals Home  

RSS FeedsMaterials, Vol. 12, Pages 578: N-Lipidated Amino Acids and Peptides Immobilized on Cellulose Able to Split Amide Bonds (Materials)

 
 

16 february 2019 17:00:04

 
Materials, Vol. 12, Pages 578: N-Lipidated Amino Acids and Peptides Immobilized on Cellulose Able to Split Amide Bonds (Materials)
 


N-lipidated short peptides and amino acids immobilized on the cellulose were used as catalysts cleaved amide bonds under biomimetic conditions. In order to select catalytically most active derivatives a library of 156 N-lipidated amino acids, dipeptides and tripeptides immobilized on cellulose was obtained. The library was synthesized from serine, histidine and glutamic acid peptides N-acylated with heptanoic, octanoic, hexadecanoic and (E)-octadec-9-enoic acids. Catalytic efficiency was monitored by spectrophotometric determination of p-nitroaniline formed by the hydrolysis of a 0.1 M solution of Z-Leu-NP. The most active 8 structures contained tripeptide fragment with 1-3 serine residues. It has been found that incorporation of metal ions into catalytic pockets increase the activity of the synzymes. The structures of the 17 most active catalysts selected from the library of complexes obtained with Cu2+ ion varied from 16 derivatives complexed with Zn2+ ion. For all of them, a very high reaction rate during the preliminary phase of measurements was followed by a substantial slowdown after 1 h. The catalytic activity gradually diminished after subsequent re-use. HPLC analysis of amide bond splitting confirmed that substrate consumption proceeded in two stages. In the preliminary stage 24–40% of the substrate was rapidly hydrolysed followed by the substantially lower reaction rate. Nevertheless, using the most competent synzymes product of hydrolysis was formed with a yield of 60–83% after 48h under mild and strictly biomimetic conditions.


 
59 viewsCategory: Chemistry, Physics
 
Materials, Vol. 12, Pages 580: Systematic Degradation Rate Analysis of Surface-Functionalized Porous Silicon Nanoparticles (Materials)
Materials, Vol. 12, Pages 577: Steam Oxidation of Austenitic Heat-Resistant Steels TP347H and TP347HFG at 650-800 °C (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten