MyJournals Home  

RSS FeedsMolecules, Vol. 24, Pages 682: Synthesis, Characterization, and Biological Activity of a Novel Series of Benzo[4,5]imidazo[2,1-b]thiazole Derivatives as Potential Epidermal Growth Factor Receptor Inhibitors (Molecules)

 
 

17 february 2019 02:01:28

 
Molecules, Vol. 24, Pages 682: Synthesis, Characterization, and Biological Activity of a Novel Series of Benzo[4,5]imidazo[2,1-b]thiazole Derivatives as Potential Epidermal Growth Factor Receptor Inhibitors (Molecules)
 




Based on the analysis of epidermal growth factor receptor (EGFR) complexes with gefitinib with molecular docking, the scaffold-hopping strategy, combination of the active substructures, and structural optimization of EGFR inhibitors, a novel series of benzo[4,5]imidazo[2,1-b]thiazole derivatives was designed, synthesized, and evaluated for antitumor activity in human cancer cell lines and cellular toxicity against human normal cell lines using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay and EGFR inhibitory activities in vitro. Some target compounds such as 2-(benzo[4,5]imidazo[2,1-b]thiazol-3-yl)-N-(2-hydroxyphenyl)acetamide (D04) and 2-(benzo[4,5]imidazo[2,1-b]thiazol-3-yl)-N-(naphthalen-1-yl)acetamide (D08) have shown significant antitumor activity against the EGFR high-expressed human cell line HeLa. All the target compounds showed hardly any antitumor activity against the EGFR low-expressed human cell line HepG2, and nearly no cellular toxicity against the human normal cell lines HL7702 and human umbilical vein endothelial cell lines (HUVEC). The inhibitory activities against EGFR kinase in vitro of the three target compounds were greatly consistent with the anti-proliferative activities. The preliminary structure–activity relationships of the target compounds were summarized. Conclusively, the novel benzo[4,5]imidazo[2,1-b]thiazole derivatives as novel potential EGFR inhibitors may be used as the potential lead compounds for the development of antitumor agents.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
47 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 24, Pages 683: Changes of Phytochemical Components (Urushiols, Polyphenols, Gallotannins) and Antioxidant Capacity during Fomitella fraxinea-Mediated Fermentation of Toxicodendron vernicifluum Bark (Molecules)
Molecules, Vol. 24, Pages 681: The Good, the Bad, and the Ugly: `HiPen`, a New Dataset for Validating (S)QM/MM Free Energy Simulations (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn