MyJournals Home  

RSS FeedsThe small RbcS-like domains of the {beta}-carboxysome structural protein CcmM bind RubisCO at a site distinct from that binding the RbcS subunit [Microbiology] (Journal of Biological Chemistry)

 
 

22 february 2019 10:00:11

 
The small RbcS-like domains of the {beta}-carboxysome structural protein CcmM bind RubisCO at a site distinct from that binding the RbcS subunit [Microbiology] (Journal of Biological Chemistry)
 


Carboxysomes are compartments in bacterial cells that promote efficient carbon fixation by sequestering RubisCO and carbonic anhydrase within a protein shell that impedes CO2 escape. The key to assembling this protein complex is CcmM, a multidomain protein whose C-terminal region is required for RubisCO recruitment. This CcmM region is built as a series of copies (generally 3-5) of a small domain, CcmMS, joined by unstructured linkers. CcmMS domains have weak, but significant, sequence identity to RubisCO`s small subunit, RbcS, suggesting that CcmM binds RubisCO by displacing RbcS. We report here the 1.35-Å structure of the first Thermosynechococcus elongatus CcmMS domain, revealing that it adopts a compact, well-defined structure that resembles that of RbcS. CcmMS, however, lacked key RbcS RubisCO-binding determinants, most notably an extended N-terminal loop. Nevertheless, individual CcmMS domains are able to bind RubisCO in vitro with 1.16 ?m affinity. Two or four linked CcmMS domains did not exhibit dramatic increases in this affinity, implying that short, disordered linkers may frustrate successive CcmMS domains attempting to simultaneously bind a single RubisCO oligomer. Size-exclusion chromatography-coupled right-angled light scattering (SEC-RALS) and native MS experiments indicated that multiple CcmMS domains can bind a single RubisCO holoenzyme and, moreover, that RbcS is not released from these complexes. CcmMS bound equally tightly to a RubisCO variant in which the ?/? domain of RbcS was deleted, suggesting that CcmMS binds RubisCO independently of its RbcS subunit. We propose that, instead, the electropositive CcmMS may bind to an extended electronegative pocket between RbcL dimers.


 
39 viewsCategory: Biochemistry
 
Crystal structure of the Vibrio cholerae VqmA-ligand-DNA complex provides insight into ligand-binding mechanisms relevant for drug design [Microbiology] (Journal of Biological Chemistry)
An unexpected sticking point for carboxysome assembly [Protein Structure and Folding] (Journal of Biological Chemistry)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Biochemistry


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten