MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 455: Crop Classification Based on a Novel Feature Filtering and Enhancement Method (Remote Sensing)

 
 

22 february 2019 16:03:48

 
Remote Sensing, Vol. 11, Pages 455: Crop Classification Based on a Novel Feature Filtering and Enhancement Method (Remote Sensing)
 


Vegetation indices, such as the normalized difference vegetation index (NDVI) or enhanced vegetation index (EVI) derived from remote sensing images, are widely used for crop classification. However, vegetation index profiles for different crops with a similar phenology lead to difficulties in discerning these crops both spectrally and temporally. This paper proposes a feature filtering and enhancement (FFE) method to map soybean and maize, two major crops widely cultivated during the summer season in Northeastern China. Different vegetation indices are first calculated and the probability density functions (PDFs) of these indices for the target classes are established based on the hypothesis of normal distribution; the vegetation index images are then filtered using the PDFs to obtain enhanced index images where the pixel values of the target classes are ”enhanced”. Subsequently, the minimum Gini index of each enhanced index image is computed, generating at the same time the weight for every index. A composite enhanced feature image is produced by summing all indices with their weights. Finally, a classification is made from the composite enhanced feature image by thresholding, which is derived automatically based on the samples. The efficiency of the proposed FFE method is compared with the maximum likelihood classification (MLC), support vector machine (SVM), and random forest (RF) in a mapping operation to determine the soybean and maize distribution in a county in Northeastern China. The classification accuracies resulting from this comparison show that the FFE method outperforms MLC, and its accuracies are similar to those of SVM and RF, with an overall accuracy of 0.902 and a kappa coefficient of 0.846. This indicates that the FFE method is an appropriate method for crop classification to distinguish crops with a similar phenology. Our research also shows that when the sample size reaches a certain level (e.g., 2000), the mean and standard deviation of the sample are very close to the actual values, which leads to high classification accuracy. In a case where the condition of normal distribution is not fulfilled, the PDF of the vegetation index can be created by a lookup table. Furthermore, as the method is rather simple and explicit, and convenient in terms of computing, it can be used as the backbone for automatic crop mapping operations.


 
82 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 451: Multi-Feature Based Ocean Oil Spill Detection for Polarimetric SAR Data Using Random Forest and the Self-Similarity Parameter (Remote Sensing)
Remote Sensing, Vol. 11, Pages 454: Multi-GNSS Relative Positioning with Fixed Inter-System Ambiguity (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten