MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 458: Spectral Heterogeneity Predicts Local-Scale Gamma and Beta Diversity of Mesic Grasslands (Remote Sensing)

 
 

23 february 2019 06:00:37

 
Remote Sensing, Vol. 11, Pages 458: Spectral Heterogeneity Predicts Local-Scale Gamma and Beta Diversity of Mesic Grasslands (Remote Sensing)
 


Plant species diversity is an important metric of ecosystem functioning, but field assessments of diversity are constrained in number and spatial extent by labor and other expenses. We tested the utility of using spatial heterogeneity in the remotely-sensed reflectance spectrum of grassland canopies to model both spatial turnover in species composition and abundances (β diversity) and species diversity at aggregate spatial scales (γ diversity). Shannon indices of γ and β diversity were calculated from field measurements of the number and relative abundances of plant species at each of two spatial grains (0.45 m2 and 35.2 m2) in mesic grasslands in central Texas, USA. Spectral signatures of reflected radiation at each grain were measured from ground-level or an unmanned aerial vehicle (UAV). Partial least squares regression (PLSR) models explained 59–85% of variance in γ diversity and 68–79% of variance in β diversity using spatial heterogeneity in canopy optical properties. Variation in both γ and β diversity were associated most strongly with heterogeneity in reflectance in blue (350–370 nm), red (660–770 nm), and near infrared (810–1050 nm) wavebands. Modeled diversity was more sensitive by a factor of three to a given level of spectral heterogeneity when derived from data collected at the small than larger spatial grain. As estimated from calibrated PLSR models, β diversity was greater, but γ diversity was smaller for restored grassland on a lowland clay than upland silty clay soil. Both γ and β diversity of grassland can be modeled by using spatial heterogeneity in vegetation optical properties provided that the grain of reflectance measurements is conserved.


 
100 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 456: A New Remote Sensing Dryness Index Based on the Near-Infrared and Red Spectral Space (Remote Sensing)
Remote Sensing, Vol. 11, Pages 459: Detecting Square Markers in Underwater Environments (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten