MyJournals Home  

RSS FeedsIJERPH, Vol. 16, Pages 870: Time-of-day Control Double-Order Optimization of Traffic Safety and Data-Driven Intersections (International Journal of Environmental Research and Public Health)

 
 

9 march 2019 13:00:48

 
IJERPH, Vol. 16, Pages 870: Time-of-day Control Double-Order Optimization of Traffic Safety and Data-Driven Intersections (International Journal of Environmental Research and Public Health)
 


This paper proposes a novel two-order optimization model of the division of time-of-day control segmented points of road intersection to address the limitations of the randomness of artificial experience, avoid the complex multi-factor division calculation, and optimize the traditional model over traffic safety and data-driven methods. For the first-order optimization—that is, deep optimization of the model input data—we first increase the dimension of traditional traffic flow data by data-driven and traffic safety methods, and develop a vector quantity to represent the size, direction, and time frequency with conflict point traffic of the total traffic flow at a certain intersection for a period by introducing a 3D vector of intersection traffic flow. Then, a time-series segmentation algorithm is used to recurse the distance amongst adjacent vectors to obtain the initial scheme of segmented points, and the segmentation points are finally divided by the combination of the preliminary scheme. For the second-order optimization—that is, model adaptability analysis—the traffic flow data at intersections are subjected to standardised processing by five-number description. The different traffic flow characteristics of the intersection are categorised by the K central point clustering algorithm of big data, and an applicability analysis of each type of intersection is conducted by using an innovated piecewise point division model. The actual traffic flow data of 155 intersections in Yuecheng District, Shaoxing, China, in 2016 are tested. Four types of intersections in the tested range are evaluated separately by the innovated piecewise point division model and the traditional total flow segmentation model on the basis of Synchro 7 simulation software. It is shown that when the innovated double-order optimization model is used in the intersection according to the ‘hump-type’ traffic flow characteristic, its control is more accurate and efficient than that of the traditional total flow segmentation model. The total delay time is reduced by approximately 5.6%. In particular, the delay time in the near-peak-flow buffer period is significantly reduced by approximately 17%. At the same time, the traffic accident rate has also dropped significantly, effectively improving traffic safety at intersections.


 
95 viewsCategory: Medicine, Pathology, Toxicology
 
IJERPH, Vol. 16, Pages 867: Rare Diseases with Periodontal Manifestations (International Journal of Environmental Research and Public Health)
IJERPH, Vol. 16, Pages 869: Health-Associated Nutrition and Exercise Behaviors in Relation to Metabolic Risk Factors Stratified by Body Mass Index (International Journal of Environmental Research and Public Health)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Toxicology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten