MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 661: Potential of Modern Photogrammetry Versus Airborne Laser Scanning for Estimating Forest Variables in a Mountain Environment (Remote Sensing)

 
 

19 march 2019 12:03:03

 
Remote Sensing, Vol. 11, Pages 661: Potential of Modern Photogrammetry Versus Airborne Laser Scanning for Estimating Forest Variables in a Mountain Environment (Remote Sensing)
 


Digital stereo aerial photographs are periodically updated in many countries and offer a viable option for the regular update of information on forest variables. We compared the potential of image-based point clouds derived from three different sets of aerial photographs with airborne laser scanning (ALS) to assess plot-level forest attributes in a mountain environment. The three data types used were (A) high overlapping pan-sharpened (80/60%); (B) high overlapping panchromatic band (80/60%); and (C) standard overlapping pan-sharpened stereo aerial photographs (60/30%). We used height and density metrics at the plot level derived from image-based and ALS point clouds as the explanatory variables and Lorey’s mean height, timber volume, and mean basal area as the response variables. We obtained a RMSE = 8.83%, 29.24% and 35.12% for Lorey’s mean height, volume, and basal area using ALS data, respectively. Similarly, we obtained a RMSE = 9.96%, 31.13%, and 35.99% and RMSE = 11.28%, 31.01%, and 35.66% for Lorey’s mean height, volume and basal area using image-based point clouds derived from pan-sharpened stereo aerial photographs with 80/60% and 60/30% overlapping, respectively. For image-based point clouds derived from a panchromatic band of stereo aerial photographs (80%/60%), we obtained an RMSE = 10.04%, 31.19% and 35.86% for Lorey’s mean height, volume, and basal area, respectively. The overall findings indicated that the performance of image-based point clouds in all cases were as good as ALS. This highlights that in the presence of a highly accurate digital terrain model (DTM) from ALS, image-based point clouds offer a viable option for operational forest management in all countries where stereo aerial photographs are updated on a routine basis.


 
46 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 662: Role of Emissivity in Lava Flow `Distance-to-Run` Estimates from Satellite-Based Volcano Monitoring (Remote Sensing)
Remote Sensing, Vol. 11, Pages 670: Wetland Classification with Multi-Angle/Temporal SAR Using Random Forests (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten