MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 692: Urban Mapping Accuracy Enhancement in High-Rise Built-Up Areas Deployed by 3D-Orthorectification Correction from WorldView-3 and LiDAR Imageries (Remote Sensing)

 
 

22 march 2019 13:03:55

 
Remote Sensing, Vol. 11, Pages 692: Urban Mapping Accuracy Enhancement in High-Rise Built-Up Areas Deployed by 3D-Orthorectification Correction from WorldView-3 and LiDAR Imageries (Remote Sensing)
 




Orthorectification is an important step in generating accurate land use/land cover (LULC) from satellite imagery, particularly in urban areas with high-rise buildings. Such buildings generally appear as oblique shapes on very-high-resolution (VHR) satellite images, which reflect a bigger area of coverage than the real built-up area on LULC mapping. This drawback can cause not only uncertainties in urban mapping and LULC classification, but can also result in inaccurate urban change detection. Overestimating volume or area of high-rise buildings has a negative impact on computing the exact amount of environmental heat and emission. Hence, in this study, we propose a method of orthorectfiying VHR WorldView-3 images by integrating light detection and ranging (LiDAR) data to overcome the aforementioned problems. A 3D rational polynomial coefficient (RPC) model was proposed with respect to high-accuracy ground control points collected from the LiDAR data derived from the digital surface model. Multiple probabilities for generating an orthrorectified image from WV-3 were assessed using 3D RCP model to achieve the optimal combination technique, with low vertical and horizontal errors. Ground control point (GCPs) collection is sensitive to variation in number and data collection pattern. These steps are important in orthorectification because they can cause the morbidity of a standard equation, thereby interrupting the stability of 3D RCP model by reducing the accuracy of the orthorectified image. Hence, we assessed the maximum possible scenarios of resampling and ground control point collection techniques to bridge the gap. Results show that the 3D RCP model accurately orthorectifies the VHR satellite image if 20 to 100 GCPs were collected by convenience pattern. In addition, cubic conventional resampling algorithm improved the precision and smoothness of the orthorectified image. According to the root mean square error, the proposed combination technique enhanced the vertical and horizontal accuracies of the geo-positioning process to up to 0.8 and 1.8 m, respectively. Such accuracy is considered very high in orthorectification. The proposed technique is easy to use and can be replicated for other VHR satellite and aerial photos.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
49 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 686: Polarization Analysis of the Impact of Temporal Decorrelation in Synthetic Aperture Radar (SAR) Tomography (Remote Sensing)
Remote Sensing, Vol. 11, Pages 699: Monitoring of Snow Cover Ablation Using Very High Spatial Resolution Remote Sensing Datasets (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn