MyJournals Home  

RSS FeedsEntropy, Vol. 21, Pages 423: Optimizing Deep CNN Architectures for Face Liveness Detection (Entropy)


20 april 2019 22:04:37

Entropy, Vol. 21, Pages 423: Optimizing Deep CNN Architectures for Face Liveness Detection (Entropy)

Face recognition is a popular and efficient form of biometric authentication used in many software applications. One drawback of this technique is that it is prone to face spoofing attacks, where an impostor can gain access to the system by presenting a photograph of a valid user to the sensor. Thus, face liveness detection is a necessary step before granting authentication to the user. In this paper, we have developed deep architectures for face liveness detection that use a combination of texture analysis and a convolutional neural network (CNN) to classify the captured image as real or fake. Our development greatly improved upon a recent approach that applies nonlinear diffusion based on an additive operator splitting scheme and a tridiagonal matrix block-solver algorithm to the image, which enhances the edges and surface texture in the real image. We then fed the diffused image to a deep CNN to identify the complex and deep features for classification. We obtained 100% accuracy on the NUAA Photograph Impostor dataset for face liveness detection using one of our enhanced architectures. Further, we gained insight into the enhancement of the face liveness detection architecture by evaluating three different deep architectures, which included deep CNN, residual network, and the inception network version 4. We evaluated the performance of each of these architectures on the NUAA dataset and present here the experimental results showing under what conditions an architecture would be better suited for face liveness detection. While the residual network gave us competitive results, the inception network version 4 produced the optimal accuracy of 100% in liveness detection (with nonlinear anisotropic diffused images with a smoothness parameter of 15). Our approach outperformed all current state-of-the-art methods. Digg Facebook Google StumbleUpon Twitter
174 viewsCategory: Informatics, Physics
Entropy, Vol. 21, Pages 424: Soft Randomized Machine Learning Procedure for Modeling Dynamic Interaction of Regional Systems (Entropy)
Entropy, Vol. 21, Pages 422: The Einstein-Podolsky-Rosen Steering and Its Certification (Entropy)
blog comments powered by Disqus
The latest issues of all your favorite science journals on one page


Register | Retrieve



Use these buttons to bookmark us: Digg Facebook Google StumbleUpon Twitter

Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn