MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 1196: A Study on the Assessment of Multi-Source Satellite Soil Moisture Products and Reanalysis Data for the Tibetan Plateau (Remote Sensing)

 
 

20 may 2019 14:02:55

 
Remote Sensing, Vol. 11, Pages 1196: A Study on the Assessment of Multi-Source Satellite Soil Moisture Products and Reanalysis Data for the Tibetan Plateau (Remote Sensing)
 




Soil moisture is a key variable in the process of land–atmosphere energy and water exchange. Currently, there are a large number of operational satellite-derived soil moisture products and reanalysis soil moisture products available. However, due to the lack of in situ soil moisture measurements over the Tibetan Plateau (TP), their accuracy and applicability are unclear. Based on the in situ measurements of the soil moisture observing networks established at Maqu, Naqu, Ali, and Shiquanhe (Sq) by the Institute of Tibetan Plateau Research, the Chinese Academy of Sciences, the Northwest Institute of Eco-Environmental Resources, the Chinese Academy of Sciences and the University of Twente over the TP, the accuracy and reliability of the European Space Agency Climate Change Initiative Soil Moisture version 4.4 (ESA CCI SM v4.4) soil moisture products and the European Centre for Medium-Range Weather Forecasts Reanalysis 5 (ERA5) soil moisture product were evaluated. The spatiotemporal distributions and interannual variations of the soil moisture were analyzed. Further, the climatological soil moisture changing trends across the TP were explored. The results show that with regard to the whole plateau, the combined product performs the best (unbiased root-mean-square error (ubRMSE) = 0.043 m3/m3, R = 0.66), followed by the active product (ubRMSE = 0.048 m3/m3, R = 0.62), the passive product (ubRMSE = 0.06 m3/m3, R = 0.61), and the ERA5 soil moisture product (ubRMSE = 0.067 m3/m3, R = 0.52). Considering the good spatiotemporal data continuity of the ERA5 soil moisture product, the ERA5 soil moisture data from 1979 to 2018 were used to analyze the climatological soil moisture changing trend for the entire TP surface. It was found that there was an increasing trend of soil moisture across the TP, which was consistent with the overall trends of increasing precipitation and decreasing evaporation. Moreover, the shrinkage of the cryosphere in conjunction with the background TP warming presumably contribute to soil moisture change.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
88 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 1197: Forest Stand Species Mapping Using the Sentinel-2 Time Series (Remote Sensing)
Remote Sensing, Vol. 11, Pages 1201: Changes in SO2 Flux Regime at Mt. Etna Captured by Automatically Processed Ultraviolet Camera Data (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn