MyJournals Home  

RSS FeedsSensors, Vol. 19, Pages 2390: SmartFire: Intelligent Platform for Monitoring Fire Extinguishers and Their Building Environment (Sensors)

 
 

25 may 2019 08:00:17

 
Sensors, Vol. 19, Pages 2390: SmartFire: Intelligent Platform for Monitoring Fire Extinguishers and Their Building Environment (Sensors)
 


Due to fire protection regulations, a minimum number of fire extinguishers must be available depending on the surface area of each building, industrial establishment or workplace. There is also a set of rules that establish where the fire extinguisher should be placed: always close to the points that are most likely to be affected by a fire and where they are visible and accessible for use. Fire extinguishers are pressure devices, which means that they require maintenance operations that ensure they will function properly in the case of a fire. The purpose of manual and periodic fire extinguisher checks is to verify that their labeling, installation and condition comply with the standards. Security seals, inscriptions, hose and other seals are thoroughly checked. The state of charge (weight and pressure) of the extinguisher, the bottle of propellant gas (if available), and the state of all mechanical parts (nozzle, valves, hose, etc.) are also checked. To ensure greater safety and reduce the economic costs associated with maintaining fire extinguishers, it is necessary to develop a system that allows monitoring of their status. One of the advantages of monitoring fire extinguishers is that it will be possible to understand what external factors affect them (for example, temperature or humidity) and how they do so. For this reason, this article presents a system of soft agents that monitors the state of the extinguishers, collects a history of the state of the extinguisher and environmental factors and sends notifications if any parameter is not within the range of normal values.The results rendered by the SmartFire prototype indicate that its accuracy in calculating pressure changes is equivalent to that of a specific data acquisition system (DAS). The comparative study of the two curves (SmartFire and DAS) shows that the average error between the two curves is negligible: 8% in low pressure measurements (up to 3 bar) and 0.3% in high pressure (above 3 bar).


 
71 viewsCategory: Chemistry, Physics
 
Sensors, Vol. 19, Pages 2389: Performance and Analysis of Feature Tracking Approaches in Laser Speckle Instrumentation (Sensors)
Materials, Vol. 12, Pages 1700: Effect of Long-Time Annealing at 1000 °C on Phase Constituent and Microhardness of the 20Co-Cr-Fe-Ni Alloys (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten